Math Problem Statement

Sin^4 (x)- cos^4(×)+cos^2(×)

Solution

We aim to simplify the expression:

sin4(x)cos4(x)+cos2(x).\sin^4(x) - \cos^4(x) + \cos^2(x).

Step 1: Apply the difference of squares

The term sin4(x)cos4(x)\sin^4(x) - \cos^4(x) can be factored using the difference of squares formula: a2b2=(ab)(a+b).a^2 - b^2 = (a - b)(a + b).

Let a=sin2(x)a = \sin^2(x) and b=cos2(x)b = \cos^2(x), so: sin4(x)cos4(x)=(sin2(x)cos2(x))(sin2(x)+cos2(x)).\sin^4(x) - \cos^4(x) = (\sin^2(x) - \cos^2(x))(\sin^2(x) + \cos^2(x)).

Step 2: Simplify using trigonometric identities

From the Pythagorean identity: sin2(x)+cos2(x)=1.\sin^2(x) + \cos^2(x) = 1.

Substituting this into the factorization: sin4(x)cos4(x)=(sin2(x)cos2(x))(1).\sin^4(x) - \cos^4(x) = (\sin^2(x) - \cos^2(x))(1).

Thus: sin4(x)cos4(x)=sin2(x)cos2(x).\sin^4(x) - \cos^4(x) = \sin^2(x) - \cos^2(x).

Step 3: Combine the remaining terms

The expression now becomes: sin2(x)cos2(x)+cos2(x).\sin^2(x) - \cos^2(x) + \cos^2(x).

Combine like terms: sin2(x)cos2(x)+cos2(x)=sin2(x).\sin^2(x) - \cos^2(x) + \cos^2(x) = \sin^2(x).

Final Answer:

sin4(x)cos4(x)+cos2(x)=sin2(x).\sin^4(x) - \cos^4(x) + \cos^2(x) = \sin^2(x).

Would you like me to elaborate on any step?


Related Questions:

  1. What is the difference of squares formula, and how is it used in trigonometry?
  2. How does the Pythagorean identity simplify trigonometric expressions?
  3. Can sin2(x)cos2(x)\sin^2(x) - \cos^2(x) be rewritten in terms of other trigonometric functions?
  4. What are other ways to simplify sin4(x)cos4(x)\sin^4(x) - \cos^4(x) without factoring?
  5. How does this simplification apply to solving trigonometric equations?

Tip:

Always check if a trigonometric expression can be simplified using identities like the Pythagorean identity or factorization techniques. These shortcuts save time and effort!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Factorization
Pythagorean Identity

Formulas

a^2 - b^2 = (a - b)(a + b)
\sin^2(x) + \cos^2(x) = 1

Theorems

Difference of Squares
Pythagorean Identity

Suitable Grade Level

Grades 9-12