Math Problem Statement
\frac{{1 + {\text {sin}}2\theta + {\text {cos}}2\theta }}{{1 + {\text {sin}}2\theta - {\text {cos}}2\theta }} is equals to
\frac{1}{2} tan θ
\frac{1}{2} cot θ
tan θ
cot θ
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Double Angle Identities
Trigonometric Simplification
Formulas
\sin 2\theta = 2 \sin \theta \cos \theta
\cos 2\theta = \cos^2 \theta - \sin^2 \theta
\cos 2\theta = 1 - 2\sin^2 \theta
Theorems
Trigonometric Identity Theorems
Double Angle Theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Simplifying Trigonometric Expression: sin^2(θ) - cos^2(θ) / sin(θ)cos(θ)
Proving Trigonometric Identity: cos^2θ - sin^2θ = 1 - 2 sin θ
Simplifying \cos(\theta) \sin(\theta) using Double-Angle Identity
Simplify the Trigonometric Expression 2cos^2θ - 1 Using Double-Angle Identities
Simplifying (5 - 2 sin^2 theta cos^2 theta) using Trigonometric Identities