Math Problem Statement

Simplify ratios, calculate missing numbers, and convert fractional and decimal ratios to whole numbers. Exercises involve simplifying ratios, solving proportional relationships, and handling fractions and decimals.

Solution

Let's go through the exercises one by one. I'll provide solutions and explanations for each section. The instructions are in Dutch, so I’ll also translate as necessary for clarity.

Task 1: Vereenvoudig de volgende verhoudingen (Simplify the following ratios)

You need to simplify the given ratios to their lowest terms.

a) 40:440 : 4

  • Simplified: 404=10:1\frac{40}{4} = 10 : 1

b) 7:567 : 56

  • Simplified: 756=1:8\frac{7}{56} = 1 : 8

c) 8:208 : 20

  • Simplified: 820=2:5\frac{8}{20} = 2 : 5

d) 48:6048 : 60

  • Simplified: 4860=4:5\frac{48}{60} = 4 : 5

e) 35:3035 : 30

  • Simplified: 3530=7:6\frac{35}{30} = 7 : 6

f) 72:10872 : 108

  • Simplified: 72108=2:3\frac{72}{108} = 2 : 3

g) 12:3012 : 30

  • Simplified: 1230=2:5\frac{12}{30} = 2 : 5

h) 30:7530 : 75

  • Simplified: 3075=2:5\frac{30}{75} = 2 : 5

Task 2: Bereken de ontbrekende getallen (Calculate the missing numbers)

Here you are solving proportional relationships (ratios).

a) 3:8=:243 : 8 = \dots : 24

  • Multiply both sides of the ratio by 3: 248=3\frac{24}{8} = 3, so =9\dots = 9.
    Answer: 3:8=9:243 : 8 = 9 : 24

b) :5=12:20\dots : 5 = 12 : 20

  • Multiply both sides by 520=0.25\frac{5}{20} = 0.25, so =3\dots = 3.
    Answer: 3:5=12:203 : 5 = 12 : 20

c) 3:4=27:3 : 4 = 27 : \dots

  • Multiply both sides by 27/3=927/3 = 9, so =36\dots = 36.
    Answer: 3:4=27:363 : 4 = 27 : 36

Task 3: In de verhouding mogen alleen maar gehele getallen voorkomen (In the ratio, only whole numbers may appear)

Here, you are asked to simplify ratios with fractions and decimals into whole numbers.

Example: 12:34\frac{1}{2} : \frac{3}{4}

  • To simplify this: 12:34=2:3\frac{1}{2} : \frac{3}{4} = 2 : 3

Now for the others:

a) 212:12 \frac{1}{2} : 1

  • Convert 212=522 \frac{1}{2} = \frac{5}{2}, so 52:1=5:2\frac{5}{2} : 1 = 5 : 2.
    Answer: 5:25 : 2

b) 34:23\frac{3}{4} : \frac{2}{3}

  • Cross-multiply: 34:23=9:8\frac{3}{4} : \frac{2}{3} = 9 : 8.
    Answer: 9:89 : 8

c) 112:1131 \frac{1}{2} : 1 \frac{1}{3}

  • Convert 112=321 \frac{1}{2} = \frac{3}{2} and 113=431 \frac{1}{3} = \frac{4}{3}. Cross-multiply: 32:43=9:8\frac{3}{2} : \frac{4}{3} = 9 : 8.
    Answer: 9:89 : 8

d) 37.5:87.537.5 : 87.5

  • Simplified: 37.587.5=3:7\frac{37.5}{87.5} = 3 : 7.
    Answer: 3:73 : 7

e) 134:412\frac{13}{4} : 4 \frac{1}{2}

  • Convert 412=924 \frac{1}{2} = \frac{9}{2}, cross-multiply: 134:92=26:36=13:18\frac{13}{4} : \frac{9}{2} = 26 : 36 = 13 : 18.
    Answer: 13:1813 : 18

f) 31.25:93.7531.25 : 93.75

  • Simplified: 31.2593.75=1:3\frac{31.25}{93.75} = 1 : 3.
    Answer: 1:31 : 3

g) 12:34\frac{1}{2} : \frac{3}{4}

  • Cross-multiply: 12:34=2:3\frac{1}{2} : \frac{3}{4} = 2 : 3.
    Answer: 2:32 : 3

h) 7.36:13.87.36 : 13.8

  • Simplified: 7.3613.8368:690=184:345\frac{7.36}{13.8} \approx 368 : 690 = 184 : 345.
    Answer: 184:345184 : 345

i) 212:1232 \frac{1}{2} : 1 \frac{2}{3}

  • Convert 212=522 \frac{1}{2} = \frac{5}{2} and 123=531 \frac{2}{3} = \frac{5}{3}, cross-multiply: 52:53=15:10=3:2\frac{5}{2} : \frac{5}{3} = 15 : 10 = 3 : 2.
    Answer: 3:23 : 2

Do you want any further details or clarifications? Here are five related questions to deepen understanding:

  1. How do you simplify ratios involving decimals?
  2. What is the process for converting mixed numbers to improper fractions?
  3. Can you find the missing values in other proportional relationships?
  4. How do cross-multiplication and cancellation help simplify ratios?
  5. How do you deal with complex ratios involving fractions and decimals together?

Tip: When simplifying ratios with fractions, always convert them to improper fractions first before simplifying!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Ratios
Proportions
Fractions
Decimals

Formulas

Simplifying ratios: a:b = a/b
Cross-multiplication for proportions
Converting mixed numbers to improper fractions

Theorems

Proportionality Theorem
Fraction Simplification Theorem

Suitable Grade Level

Grades 6-8