Math Problem Statement

Tentukan hasil dari operasi bentuk akar berikut: 1. 5√2 + √2 - 3√2, 2. 3√24 - √150 + 2√54, 3. 2√72 - 5√32 + 3√162, 4. (4√2)(√2 + √3), 5. (3 - √5)(3 + √5)

Solution

Let's solve the square root operations from the image one by one.

1. 52+2325\sqrt{2} + \sqrt{2} - 3\sqrt{2}

Combine like terms:

(5+13)2=32(5 + 1 - 3)\sqrt{2} = 3\sqrt{2}

So, the result is 32\boxed{3\sqrt{2}}.


2. 324150+2543\sqrt{24} - \sqrt{150} + 2\sqrt{54}

First, simplify the square roots:

  • 24=4×6=26\sqrt{24} = \sqrt{4 \times 6} = 2\sqrt{6}
  • 150=25×6=56\sqrt{150} = \sqrt{25 \times 6} = 5\sqrt{6}
  • 54=9×6=36\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}

Now substitute into the expression:

324150+254=3(26)56+2(36)3\sqrt{24} - \sqrt{150} + 2\sqrt{54} = 3(2\sqrt{6}) - 5\sqrt{6} + 2(3\sqrt{6}) =6656+66= 6\sqrt{6} - 5\sqrt{6} + 6\sqrt{6} =(65+6)6=76= (6 - 5 + 6)\sqrt{6} = 7\sqrt{6}

So, the result is 76\boxed{7\sqrt{6}}.


3. 272532+31622\sqrt{72} - 5\sqrt{32} + 3\sqrt{162}

First, simplify the square roots:

  • 72=36×2=62\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}
  • 32=16×2=42\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}
  • 162=81×2=92\sqrt{162} = \sqrt{81 \times 2} = 9\sqrt{2}

Now substitute into the expression:

272532+3162=2(62)5(42)+3(92)2\sqrt{72} - 5\sqrt{32} + 3\sqrt{162} = 2(6\sqrt{2}) - 5(4\sqrt{2}) + 3(9\sqrt{2}) =122202+272= 12\sqrt{2} - 20\sqrt{2} + 27\sqrt{2} =(1220+27)2=192= (12 - 20 + 27)\sqrt{2} = 19\sqrt{2}

So, the result is 192\boxed{19\sqrt{2}}.


4. (42)(2+3)(4\sqrt{2})(\sqrt{2} + \sqrt{3})

Distribute 424\sqrt{2}:

42×2+42×34\sqrt{2} \times \sqrt{2} + 4\sqrt{2} \times \sqrt{3} =4(2)+46= 4(2) + 4\sqrt{6} =8+46= 8 + 4\sqrt{6}

So, the result is 8+46\boxed{8 + 4\sqrt{6}}.


5. (35)(3+5)(3 - \sqrt{5})(3 + \sqrt{5})

This is a difference of squares:

(35)(3+5)=32(5)2(3 - \sqrt{5})(3 + \sqrt{5}) = 3^2 - (\sqrt{5})^2 =95=4= 9 - 5 = 4

So, the result is 4\boxed{4}.


Let me know if you need more details or have any questions! Here are some additional questions you can explore:

  1. How do you simplify radical expressions like 24\sqrt{24}?
  2. Why does (ab)(a+b)(a - b)(a + b) give a difference of squares?
  3. Can you expand (2+3)(23)(2 + \sqrt{3})(2 - \sqrt{3}) using the same difference of squares formula?
  4. How do you combine like terms with radicals, such as 56+365\sqrt{6} + 3\sqrt{6}?
  5. How can you simplify the expression 218+382\sqrt{18} + 3\sqrt{8}?

Tip:

When simplifying square roots, try factoring numbers into perfect squares for easier simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radical Expressions
Square Roots
Like Terms
Difference of Squares

Formulas

Simplification of square roots, e.g., √a = √b * √c
Difference of squares: (a - b)(a + b) = a^2 - b^2
Combining like terms in radical expressions

Theorems

Difference of Squares
Basic Algebraic Operations

Suitable Grade Level

Grades 9-12