Math Problem Statement

(2/7)-³

Solution

The expression (27)3\left(\frac{2}{7}\right)^{-3} can be simplified using the negative exponent rule, which states that an=1ana^{-n} = \frac{1}{a^n}.

So, applying this rule:

(27)3=1(27)3\left(\frac{2}{7}\right)^{-3} = \frac{1}{\left(\frac{2}{7}\right)^3}

Now, calculate (27)3\left(\frac{2}{7}\right)^3:

(27)3=2373=8343\left(\frac{2}{7}\right)^3 = \frac{2^3}{7^3} = \frac{8}{343}

Thus:

(27)3=18343=3438\left(\frac{2}{7}\right)^{-3} = \frac{1}{\frac{8}{343}} = \frac{343}{8}

So, the simplified result is:

(27)3=3438\left(\frac{2}{7}\right)^{-3} = \frac{343}{8}

Would you like any further explanation or details?

Here are 5 related questions:

  1. What is the rule for handling negative exponents?
  2. How do you simplify fractional powers with negative exponents?
  3. Can you solve (56)2\left(\frac{5}{6}\right)^{-2}?
  4. How do you simplify (49)32\left(\frac{4}{9}\right)^{\frac{3}{2}}?
  5. How do negative exponents affect the base number?

Tip: Negative exponents indicate reciprocals. To simplify, flip the fraction and apply the positive exponent.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Negative Exponents
Fractions

Formulas

a^(-n) = 1/a^n
(a/b)^n = a^n / b^n

Theorems

Negative Exponent Rule

Suitable Grade Level

Grades 6-8