Math Problem Statement

Sederhanakan soal-soal di bawah ini: a. 6log3 + 6log12 b. 6log9 + 26log2 − 26log6 c. 2log12 + 4log16/9 d. 5log3 × 3log1/25 e. 2log10 × 6log4 × log216

Solution

The question asks to simplify logarithmic expressions. Let's simplify each part step by step.

a. 6log3+6log12^6\log 3 + ^6\log 12

We can use the logarithmic property: alogx+alogy=alog(xy)^a\log x + ^a\log y = ^a\log(x \cdot y) Thus, this becomes: 6log(3×12)=6log36^6\log (3 \times 12) = ^6\log 36

b. 6log9+26log226log6^6\log 9 + 2 ^6\log 2 - 2 ^6\log 6

We simplify step by step using properties of logarithms: 2alogb=alog(b2)2^a\log b = ^a\log (b^2) So the expression becomes: 6log9+6log226log62^6\log 9 + ^6\log 2^2 - ^6\log 6^2 =6log9+6log46log36= ^6\log 9 + ^6\log 4 - ^6\log 36 Now, using the property: alogx+alogyalogz=alog(xyz)^a\log x + ^a\log y - ^a\log z = ^a\log\left(\frac{x \cdot y}{z}\right) We have: 6log(9×436)=6log1=0^6\log\left(\frac{9 \times 4}{36}\right) = ^6\log 1 = 0

c. 2log12+4log169^2\log 12 + ^4\log \frac{16}{9}

Using logarithmic property: alogxy=alogxalogy^a\log \frac{x}{y} = ^a\log x - ^a\log y We handle the second term first: 4log169=4log164log9=log16log4log9log4=4log22log22log32log2=0^4\log \frac{16}{9} = ^4\log 16 - ^4\log 9 = \frac{\log 16}{\log 4} - \frac{\log 9}{\log 4} = \frac{4 \log 2}{2 \log 2} - \frac{2 \log 3}{2 \log 2} = 0

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Logarithmic Properties
Simplification

Formulas

a*log(x) + a*log(y) = a*log(x*y)
a*log(b) - a*log(c) = a*log(b/c)
a*log(x) = log(x^a)

Theorems

Logarithmic Product Rule
Logarithmic Quotient Rule
Logarithmic Power Rule

Suitable Grade Level

Grades 10-12