Math Problem Statement

Simplifique y exprese el resultado en forma de fracción: \left(\frac{\left(\frac{1}{2}\right)^3}{\left(\frac{2}{3}\right)^2}\right)^{-2}

Solution

Let's solve the problem step by step.

Given Expression:

((12)3(23)2)2\left(\frac{\left(\frac{1}{2}\right)^3}{\left(\frac{2}{3}\right)^2}\right)^{-2}

Step 1: Simplify the inner fraction

  • Calculate (12)3\left(\frac{1}{2}\right)^3: (12)3=1323=18\left(\frac{1}{2}\right)^3 = \frac{1^3}{2^3} = \frac{1}{8}

  • Calculate (23)2\left(\frac{2}{3}\right)^2: (23)2=2232=49\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}

Now, substitute these back into the fraction: 1849=18×94=932\frac{\frac{1}{8}}{\frac{4}{9}} = \frac{1}{8} \times \frac{9}{4} = \frac{9}{32}

Step 2: Apply the outer exponent

Now raise 932\frac{9}{32} to the power of 2-2: (932)2=(329)2=32292=102481\left(\frac{9}{32}\right)^{-2} = \left(\frac{32}{9}\right)^2 = \frac{32^2}{9^2} = \frac{1024}{81}

Final Expression:

The expression simplifies to 102481\frac{1024}{81}.

None of the provided options directly matches this result. However, this seems like a tricky question that may involve additional simplification or checking against possible missteps. Let's go back and check if the base was correctly managed for a multiple-choice format.

Would you like to see the detailed breakdown of how to reconcile this with the answer choices or if there's any possible approximation?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fractions
Simplification

Formulas

\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}
\frac{a}{b} \div \frac{c}{d} = \frac{a \cdot d}{b \cdot c}

Theorems

Exponent Rules
Fraction Multiplication and Division

Suitable Grade Level

Grades 8-10