Math Problem Statement

<math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><msup><mfenced><msup><mfenced><mrow><mo>-</mo><mn>5</mn></mrow></mfenced><mn>2</mn></msup></mfenced><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow><mrow><msup><mfenced><msup><mn>5</mn><mn>2</mn></msup></mfenced><mrow><mo>-</mo><mn>3</mn></mrow></msup><mo>:</mo><msup><mfenced><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mn>10</mn></msup></mrow></mfrac></math>

Solution

Let us simplify the given mathematical expression step by step:

The expression is:

(1×((5)2)3)((52)3:(1)10)\frac{\left(-1 \times \left((-5)^2\right)^{-3}\right)}{\left(\left(5^2\right)^{-3} : (-1)^{10}\right)}

Step 1: Simplify the powers and terms

  1. (5)2=25(-5)^2 = 25, so: ((5)2)3=253=1253=115625\left((-5)^2\right)^{-3} = 25^{-3} = \frac{1}{25^3} = \frac{1}{15625}

  2. (52)3=253=1253=115625(5^2)^{-3} = 25^{-3} = \frac{1}{25^3} = \frac{1}{15625}

  3. (1)10=1(-1)^{10} = 1, because any even power of 1-1 equals 11.

Step 2: Rewrite the fraction

The numerator becomes: 1×115625=115625.-1 \times \frac{1}{15625} = -\frac{1}{15625}.

The denominator becomes: 115625:1=115625.\frac{1}{15625} : 1 = \frac{1}{15625}.

Thus, the entire fraction is: 115625115625.\frac{-\frac{1}{15625}}{\frac{1}{15625}}.

Step 3: Simplify the fraction

Dividing two fractions: 115625115625=1.\frac{-\frac{1}{15625}}{\frac{1}{15625}} = -1.

Final Answer:

1\boxed{-1}

Would you like a more detailed explanation or additional examples?


Here are 5 related questions:

  1. What is the result of (2)4:(2)2(-2)^4 : (-2)^2?
  2. How does the parity of an exponent affect the sign of (x)n(-x)^n?
  3. Can you explain the general rule for dividing powers with the same base?
  4. What happens when you divide two fractions?
  5. What is the value of (32)3(3^{-2})^{-3}?

Tip: When dealing with negative bases and powers, always simplify the powers first, as signs can influence the outcome!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Fraction Simplification
Negative Numbers
Powers of Negative Numbers

Formulas

Exponentiation: (a^m)^n = a^(m*n)
Fraction Division: (a/b) ÷ (c/d) = (a/b) * (d/c)

Theorems

Power of a Power Property
Power of a Negative Number
Fraction Division Theorem

Suitable Grade Level

Grades 8-10