Math Problem Statement

Semplifica le seguenti espressioni applicando le proprietà delle potenze: 1 + [(3/2)^3]^2 : {[(3/2)^2]^1 : (-1 + 1/3)^4}

Solution

The problem provided in Italian translates to: "Simplify the following expressions by applying the properties of exponents."

The expression to simplify is: [ 1 + \left[ \left( \frac{3}{2} \right)^3 \right]^2 : \left{ \left[ \left( \frac{3}{2} \right)^2 \right]^1 : \left( -1 + \frac{1}{3} \right)^4 \right} ]

To solve this, we’ll go through each part, applying the properties of exponents and simplifying step-by-step.

Step-by-Step Solution

  1. Simplify each exponent individually:

    • The term (32)3\left( \frac{3}{2} \right)^3 is raised to the power of 2. Using the property (am)n=amn(a^m)^n = a^{m \cdot n}: [(32)3]2=(32)32=(32)6\left[ \left( \frac{3}{2} \right)^3 \right]^2 = \left( \frac{3}{2} \right)^{3 \cdot 2} = \left( \frac{3}{2} \right)^6

    • Similarly, (32)2\left( \frac{3}{2} \right)^2 raised to the power of 1 remains the same: [(32)2]1=(32)2\left[ \left( \frac{3}{2} \right)^2 \right]^1 = \left( \frac{3}{2} \right)^2

  2. Simplify the inner expression:

    • The inner term (1+13)4\left( -1 + \frac{1}{3} \right)^4 requires simplifying 1+13-1 + \frac{1}{3}: 1+13=33+13=23-1 + \frac{1}{3} = -\frac{3}{3} + \frac{1}{3} = -\frac{2}{3} So, (1+13)4=(23)4\left( -1 + \frac{1}{3} \right)^4 = \left( -\frac{2}{3} \right)^4
    • Raising 23-\frac{2}{3} to the 4th power gives: (23)4=1681\left( -\frac{2}{3} \right)^4 = \frac{16}{81}
  3. Simplify the division in the brackets:

    • Now we have: (32)6(32)2:11681\frac{\left( \frac{3}{2} \right)^6}{\left( \frac{3}{2} \right)^2} : \frac{1}{\frac{16}{81}}
    • Using the property aman=amn\frac{a^m}{a^n} = a^{m - n} for the fraction: (32)6(32)2=(32)62=(32)4\frac{\left( \frac{3}{2} \right)^6}{\left( \frac{3}{2} \right)^2} = \left( \frac{3}{2} \right)^{6 - 2} = \left( \frac{3}{2} \right)^4
    • Dividing by 1681\frac{16}{81} is equivalent to multiplying by 8116\frac{81}{16}: (32)48116\left( \frac{3}{2} \right)^4 \cdot \frac{81}{16}
  4. Compute (32)4\left( \frac{3}{2} \right)^4: (32)4=8116\left( \frac{3}{2} \right)^4 = \frac{81}{16} So, 81168116=6561256\frac{81}{16} \cdot \frac{81}{16} = \frac{6561}{256}

  5. Add 1: Finally, we have: 1+6561256=256+6561256=68172561 + \frac{6561}{256} = \frac{256 + 6561}{256} = \frac{6817}{256}

Final Answer

6817256\frac{6817}{256}

Would you like further details or have any questions on specific steps?


Related Questions

  1. How do properties of exponents help in simplifying complex expressions?
  2. What are the steps for converting complex fractions to simpler forms?
  3. How do you handle negative bases raised to even powers?
  4. What is the impact of raising a fraction to a high power on its overall value?
  5. How can simplifying powers help solve equations more efficiently?

Tip

Always remember to simplify expressions inside parentheses or brackets first before applying exponent rules.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Properties of Powers
Algebraic Simplification

Formulas

(a^m)^n = a^{m * n}
a^m / a^n = a^{m - n}
Multiplying and dividing fractions

Theorems

Properties of Exponents

Suitable Grade Level

Grades 10-12