Math Problem Statement
learn this (Consider the expression $ e^x-ln(cos^2(x))+ln(1+tan^2(x))$ and then simplify it into a single term
Solution We are given the expression:
e x − ln ( cos 2 ( x ) ) + ln ( 1 + tan 2 ( x ) ) . e x −ln(cos 2 (x))+ln(1+tan 2 (x)). Let's simplify this step by step.
Step 1: Simplifying ln ( cos 2 ( x ) ) ln(cos 2 (x)) We use the logarithmic property ln ( a b )
b ln ( a ) ln(a b )=bln(a), where a
cos ( x ) a=cos(x) and b
2 b=2. Thus,
ln ( cos 2 ( x ) )
2 ln ( cos ( x ) ) . ln(cos 2 (x))=2ln(cos(x)). So the expression becomes:
e x − 2 ln ( cos ( x ) ) + ln ( 1 + tan 2 ( x ) ) . e x −2ln(cos(x))+ln(1+tan 2 (x)). Step 2: Simplifying ln ( 1 + tan 2 ( x ) ) ln(1+tan 2 (x)) Recall the trigonometric identity 1 + tan 2 ( x )
sec 2 ( x ) 1+tan 2 (x)=sec 2 (x). Using this identity, we have:
ln ( 1 + tan 2 ( x ) )
ln ( sec 2 ( x ) )
2 ln ( sec ( x ) ) . ln(1+tan 2 (x))=ln(sec 2 (x))=2ln(sec(x)). Now the expression becomes:
e x − 2 ln ( cos ( x ) ) + 2 ln ( sec ( x ) ) . e x −2ln(cos(x))+2ln(sec(x)). Step 3: Using the identity sec ( x )
1 cos ( x ) sec(x)= cos(x) 1
Next, we use the fact that sec ( x )
1 cos ( x ) sec(x)= cos(x) 1 . Therefore, we can rewrite ln ( sec ( x ) ) ln(sec(x)) as:
ln ( sec ( x ) )
ln ( 1 cos ( x ) )
− ln ( cos ( x ) ) . ln(sec(x))=ln( cos(x) 1 )=−ln(cos(x)). Substituting this into the expression, we get:
e x − 2 ln ( cos ( x ) ) + 2 ( − ln ( cos ( x ) ) )
e x − 2 ln ( cos ( x ) ) − 2 ln ( cos ( x ) ) . e x −2ln(cos(x))+2(−ln(cos(x)))=e x −2ln(cos(x))−2ln(cos(x)). This simplifies further to:
e x − 4 ln ( cos ( x ) ) . e x −4ln(cos(x)). Final Simplified Expression: Thus, the simplified expression is:
e x − 4 ln ( cos ( x ) ) . e x −4ln(cos(x)).)
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponential Functions
Logarithmic Functions
Trigonometric Identities
Formulas
ln(a^b) = b ln(a)
1 + \tan^2(x) = \sec^2(x)
sec(x) = 1 / cos(x)
Theorems
Logarithmic Properties
Trigonometric Identities
Suitable Grade Level
College-Level Mathematics (Calculus I/II)
Related Recommendation
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x)) to a Single Term
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x)) Using Logarithmic and Trigonometric Identities
Simplifying the Expression e^x - ln(cos^2(x)) + ln(1 + tan^2(x))
Simplifying e^x - ln(cos^2(x)) + ln(1 + tan^2(x)) Using Logarithmic and Trigonometric Identities
Simplify Expression with Exponential, Logarithmic, and Trigonometric Functions