Math Problem Statement

A set of math problems involving exponent rules, rationalization of denominators, and simplifying radical expressions.

Solution

Let's go through the questions one by one and solve them.

1. Hasil dari (24)3(22)3=(2^4)^3 \cdot (2^2)^3 =

This is a multiplication of powers. Simplifying each term: (24)3=212,(22)3=26(2^4)^3 = 2^{12}, \quad (2^2)^3 = 2^6 Now, multiplying these: 21226=212+6=2182^{12} \cdot 2^6 = 2^{12+6} = 2^{18}

2a. Bentuk sederhana dari 23+312=2\sqrt{3} + 3\sqrt{12} =

First, simplify 12\sqrt{12}: 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3} Thus, the expression becomes: 23+3×23=23+63=832\sqrt{3} + 3 \times 2\sqrt{3} = 2\sqrt{3} + 6\sqrt{3} = 8\sqrt{3}

2b. Bentuk rasional dari 68+5\frac{6}{\sqrt{8} + \sqrt{5}} adalah

To rationalize the denominator, multiply by the conjugate: 68+5×8585=6(85)(8)2(5)2\frac{6}{\sqrt{8} + \sqrt{5}} \times \frac{\sqrt{8} - \sqrt{5}}{\sqrt{8} - \sqrt{5}} = \frac{6(\sqrt{8} - \sqrt{5})}{(\sqrt{8})^2 - (\sqrt{5})^2} Simplifying: =6(85)85=6(85)3=2(85)= \frac{6(\sqrt{8} - \sqrt{5})}{8 - 5} = \frac{6(\sqrt{8} - \sqrt{5})}{3} = 2(\sqrt{8} - \sqrt{5}) Now, simplify 8\sqrt{8}: 2(85)=2(225)=42252(\sqrt{8} - \sqrt{5}) = 2(2\sqrt{2} - \sqrt{5}) = 4\sqrt{2} - 2\sqrt{5}

3. Hasil dari (x6)4(x^6)^4 adalah

Apply the power rule: (x6)4=x6×4=x24(x^6)^4 = x^{6 \times 4} = x^{24}

4. (9+4)(94)=(\sqrt{9} + \sqrt{4})(\sqrt{9} - \sqrt{4}) =

This is a difference of squares: (9)2(4)2=94=5(\sqrt{9})^2 - (\sqrt{4})^2 = 9 - 4 = 5

5. Jika a=4a = 4 dan b=5b = 5, maka nilai dari a5(a2b)(ab)2\frac{a^5(a^{-2}b)}{(ab)^2} adalah

First, expand both terms: Numerator: a5a2b=a52b=a3b=43×5=64×5=320\text{Numerator: } a^5 a^{-2} b = a^{5 - 2} b = a^3 b = 4^3 \times 5 = 64 \times 5 = 320 Denominator: (ab)2=(4×5)2=202=400\text{Denominator: } (ab)^2 = (4 \times 5)^2 = 20^2 = 400 Thus, the expression simplifies to: 320400=0.8\frac{320}{400} = 0.8

6. Bentuk sederhana dari 6a9b5c22a3b2c1\frac{6a^9 b^5 c^2}{2a^3 b^2 c^{-1}} adalah

Simplify the coefficients and each variable: =62a93b52c2(1)=3a6b3c3= \frac{6}{2} \cdot a^{9-3} \cdot b^{5-2} \cdot c^{2 - (-1)} = 3a^6 b^3 c^3

7. Nilai dari 220+50=2\sqrt{20} + \sqrt{50} =

First, simplify 20\sqrt{20} and 50\sqrt{50}: 20=4×5=25,50=25×2=52\sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}, \quad \sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2} Thus, the expression becomes: 2×25+52=45+522 \times 2\sqrt{5} + 5\sqrt{2} = 4\sqrt{5} + 5\sqrt{2}

8. Bentuk rasional dari 511+6\frac{5}{\sqrt{11} + 6} adalah

To rationalize the denominator, multiply by the conjugate: 511+6×116116=5(116)1136=5(116)25=15(116)\frac{5}{\sqrt{11} + 6} \times \frac{\sqrt{11} - 6}{\sqrt{11} - 6} = \frac{5(\sqrt{11} - 6)}{11 - 36} = \frac{5(\sqrt{11} - 6)}{-25} = -\frac{1}{5}(\sqrt{11} - 6) Thus, the result is: 115+65-\frac{\sqrt{11}}{5} + \frac{6}{5}

9. Bentuk rasional dari 102\frac{10}{\sqrt{2}} adalah

Multiply by the conjugate: 102×22=1022=52\frac{10}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{10\sqrt{2}}{2} = 5\sqrt{2}

10. Bentuk rasional dari 432\frac{4\sqrt{3}}{\sqrt{2}} adalah

Multiply by the conjugate: 432×22=462=26\frac{4\sqrt{3}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{6}}{2} = 2\sqrt{6}

Would you like more details or solutions for the remaining questions? Here are some related questions for further practice:

  1. How do you simplify the square root of a fraction?
  2. What is the difference of squares formula?
  3. How do you rationalize a denominator?
  4. What are the rules for multiplying and dividing exponents?
  5. How do you simplify expressions with negative exponents?

Tip: When rationalizing denominators, always look for the conjugate of the denominator to eliminate the square root.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponentiation
Rationalization
Square Roots
Simplification of Radical Expressions
Algebraic Manipulation

Formulas

(a^m)^n = a^{m*n}
Rationalization of denominators using the conjugate
Difference of squares: (a + b)(a - b) = a^2 - b^2
Basic exponent rules: a^m * a^n = a^{m+n}
Simplifying square roots: sqrt(a * b) = sqrt(a) * sqrt(b)

Theorems

Exponent Rules
Difference of Squares
Properties of Square Roots

Suitable Grade Level

Grades 9-11