Math Problem Statement

Simplify the expression \(\frac{3^{-2} \times 125^3}{6^3 \times 25^{-2}}\).

Solution

To simplify (32×125363×252)\left( \frac{3^{-2} \times 125^3}{6^3 \times 25^{-2}} \right):

  1. Rewrite using prime factors:

    • 125=53125 = 5^3
    • 25=5225 = 5^2
    • 6=2×36 = 2 \times 3

    Substituting these in, we have:

    32×(53)3(2×3)3×(52)2\frac{3^{-2} \times (5^3)^3}{(2 \times 3)^3 \times (5^2)^{-2}}

    =32×5923×33×54= \frac{3^{-2} \times 5^9}{2^3 \times 3^3 \times 5^{-4}}

  2. Simplify:

    • For 33, combine exponents: 323=353^{-2 - 3} = 3^{-5}
    • For 55, combine exponents: 59+4=5135^{9 + 4} = 5^{13}
    • For 22, it's simply 232^3

    =51323×35= \frac{5^{13}}{2^3 \times 3^5}

The simplified form is 51323×35\frac{5^{13}}{2^3 \times 3^5}.

So, the answer is (a): 35×51323\frac{3^5 \times 5^{13}}{2^3}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Prime Factorization
Simplification

Formulas

Product of Powers Rule: \(a^m \times a^n = a^{m+n}\)
Negative Exponent Rule: \(a^{-m} = \frac{1}{a^m}\)
Power of a Power Rule: \((a^m)^n = a^{m \times n}\)

Theorems

Rules of exponents

Suitable Grade Level

Grades 8-10