Math Problem Statement

Simplify the mathematical expression: 5 * ((8/5 - 4/7) / (9/7)) - 3 * (4 - 1/5) * (1/19)

Solution

Let's analyze and solve the given mathematical expression step by step. The problem is:

5(8547)÷973(415)1195 \cdot \left(\frac{8}{5} - \frac{4}{7}\right) \div \frac{9}{7} - 3 \cdot \left(4 - \frac{1}{5}\right) \cdot \frac{1}{19}

Step 1: Simplify inside the parentheses

1.1 Simplify 8547\frac{8}{5} - \frac{4}{7}:

Find the common denominator: Common denominator=35.\text{Common denominator} = 35.

Rewriting the fractions: 85=5635,47=2035.\frac{8}{5} = \frac{56}{35}, \quad \frac{4}{7} = \frac{20}{35}.

Subtract: 8547=56352035=3635.\frac{8}{5} - \frac{4}{7} = \frac{56}{35} - \frac{20}{35} = \frac{36}{35}.

1.2 Simplify 4154 - \frac{1}{5}:

Convert 44 into a fraction with denominator 5: 4=205.4 = \frac{20}{5}.

Subtract: 415=20515=195.4 - \frac{1}{5} = \frac{20}{5} - \frac{1}{5} = \frac{19}{5}.

Step 2: Divide and multiply terms

2.1 Simplify (8547)÷97\left(\frac{8}{5} - \frac{4}{7}\right) \div \frac{9}{7}:

Division by a fraction is the same as multiplying by its reciprocal: 3635÷97=363579.\frac{36}{35} \div \frac{9}{7} = \frac{36}{35} \cdot \frac{7}{9}.

Simplify the multiplication: 367359=252315.\frac{36 \cdot 7}{35 \cdot 9} = \frac{252}{315}.

Simplify the fraction: 252315=45.\frac{252}{315} = \frac{4}{5}.

2.2 Simplify 3(415)1193 \cdot \left(4 - \frac{1}{5}\right) \cdot \frac{1}{19}:

Substitute 415=1954 - \frac{1}{5} = \frac{19}{5}: 3195119.3 \cdot \frac{19}{5} \cdot \frac{1}{19}.

Cancel out 1919 in the numerator and denominator: 315=35.3 \cdot \frac{1}{5} = \frac{3}{5}.

Step 3: Final computation

Substitute back: 54535.5 \cdot \frac{4}{5} - \frac{3}{5}.

3.1 Simplify 5455 \cdot \frac{4}{5}:

545=4.5 \cdot \frac{4}{5} = 4.

3.2 Compute 4354 - \frac{3}{5}:

Convert 44 into a fraction with denominator 5: 4=205.4 = \frac{20}{5}.

Subtract: 20535=175.\frac{20}{5} - \frac{3}{5} = \frac{17}{5}.

Final Answer:

175\boxed{\frac{17}{5}}

Let me know if you need additional details or clarification!


Related Questions:

  1. How do you find a common denominator for fractions?
  2. How do you simplify complex fractions involving division and multiplication?
  3. What is the process for converting mixed numbers into improper fractions?
  4. How do you handle expressions with multiple parentheses?
  5. How can you verify the correctness of fraction operations?

Tip:

Always simplify fractions at intermediate steps to avoid large numbers and make calculations easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Arithmetic Operations
Order of Operations (PEMDAS)

Formulas

a/b - c/d = (ad - bc) / bd
Division of fractions: a/b ÷ c/d = a/b * d/c

Theorems

None

Suitable Grade Level

Grades 8-10