Math Problem Statement

[2(4x^-5/3 . x^2 + y) / (8y^-4/7 (3x)^-10/3) ]^2

Solution

We are tasked with simplifying the following expression:

\left[\frac{2\left(\frac{4x^{-\frac{5}{3}} \cdot x^2 + y}{8y^{-\frac{4}{7}} \cdot (3x)^{-\frac{10}{3}}}\right)}\right]^2

Step-by-Step Simplification

  1. Simplify the terms inside the parentheses:

    • Start with the numerator: 4x53x2=4x53+24x^{-\frac{5}{3}} \cdot x^2 = 4x^{-\frac{5}{3} + 2} To combine the exponents, express 2 as 63\frac{6}{3}: 4x53+63=4x134x^{-\frac{5}{3} + \frac{6}{3}} = 4x^{\frac{1}{3}} So, the numerator becomes: 4x13+y4x^{\frac{1}{3}} + y
  2. Simplify the denominator: 8y47(3x)1038y^{-\frac{4}{7}} \cdot (3x)^{-\frac{10}{3}} First, simplify (3x)103(3x)^{-\frac{10}{3}}: (3x)103=3103x103(3x)^{-\frac{10}{3}} = 3^{-\frac{10}{3}} \cdot x^{-\frac{10}{3}} Thus, the denominator becomes: 8y473103x1038y^{-\frac{4}{7}} \cdot 3^{-\frac{10}{3}} \cdot x^{-\frac{10}{3}}

  3. Write the expression inside the brackets: The fraction simplifies to: 4x13+y8y473103x103\frac{4x^{\frac{1}{3}} + y}{8y^{-\frac{4}{7}} \cdot 3^{-\frac{10}{3}} \cdot x^{-\frac{10}{3}}}

  4. Factor out constants and powers of 2 and 3: The constant factors can be simplified: 2(4x13+y)83103y47x103\frac{2 \cdot (4x^{\frac{1}{3}} + y)}{8 \cdot 3^{-\frac{10}{3}} \cdot y^{-\frac{4}{7}} \cdot x^{-\frac{10}{3}}} Simplify the constant term 28=14\frac{2}{8} = \frac{1}{4}, leaving: 4x13+y43103y47x103\frac{4x^{\frac{1}{3}} + y}{4 \cdot 3^{-\frac{10}{3}} \cdot y^{-\frac{4}{7}} \cdot x^{-\frac{10}{3}}}

    This simplifies further to: x13+y3103y47x103\frac{x^{\frac{1}{3}} + y}{3^{-\frac{10}{3}} \cdot y^{-\frac{4}{7}} \cdot x^{-\frac{10}{3}}}

  5. Apply the exponent outside the parentheses: We now square the entire expression: (x13+y3103y47x103)2\left( \frac{x^{\frac{1}{3}} + y}{3^{-\frac{10}{3}} \cdot y^{-\frac{4}{7}} \cdot x^{-\frac{10}{3}}} \right)^2

    This leads to: (x13+y)2(3103y47x103)2\frac{(x^{\frac{1}{3}} + y)^2}{(3^{-\frac{10}{3}} \cdot y^{-\frac{4}{7}} \cdot x^{-\frac{10}{3}})^2} Now, square the denominator: 3203y87x2033^{-\frac{20}{3}} \cdot y^{-\frac{8}{7}} \cdot x^{-\frac{20}{3}}

  6. Final simplified expression: The final result is: (x13+y)23203y87x203\frac{(x^{\frac{1}{3}} + y)^2}{3^{-\frac{20}{3}} \cdot y^{-\frac{8}{7}} \cdot x^{-\frac{20}{3}}}

Let me know if you need further details or have any questions.

Related Questions:

  1. How do you combine exponents with the same base in algebra?
  2. What is the process for distributing exponents across a fraction?
  3. How do you simplify expressions with negative exponents?
  4. What are the common laws of exponents used in simplification?
  5. How do you handle fractions raised to a power?

Tip:

When dealing with negative exponents, remember that an=1ana^{-n} = \frac{1}{a^n}, and this can help simplify expressions quickly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponent Laws
Algebraic Simplification
Fractions with Exponents
Negative Exponents
Power of a Fraction

Formulas

a^m * a^n = a^(m+n)
a^-n = 1/a^n
(a/b)^n = a^n / b^n

Theorems

Exponent Addition Rule
Negative Exponent Rule
Power of a Fraction Rule

Suitable Grade Level

Grades 10-12