Math Problem Statement

simplify

Solution

Let's simplify the expression step-by-step. The given expression is:

(xy2)6×(x3y7)2(x0y2)0.5\frac{(xy^2)^{-6} \times (x^3 y^7)^2}{(x^0 y^2)^{-0.5}}

First, we'll simplify each component individually.

Simplify each term:

  1. Simplify (xy2)6(xy^2)^{-6}: (xy2)6=x6(y2)6=x6y12(xy^2)^{-6} = x^{-6} \cdot (y^2)^{-6} = x^{-6} \cdot y^{-12}

  2. Simplify (x3y7)2(x^3 y^7)^2: (x3y7)2=x32y72=x6y14(x^3 y^7)^2 = x^{3 \cdot 2} \cdot y^{7 \cdot 2} = x^6 \cdot y^{14}

  3. Simplify (x0y2)0.5(x^0 y^2)^{-0.5}: (x0y2)0.5=x00.5y20.5=x0y1=y1(x^0 y^2)^{-0.5} = x^{0 \cdot -0.5} \cdot y^{2 \cdot -0.5} = x^0 \cdot y^{-1} = y^{-1}

Substitute back into the original expression:

x6y12x6y14y1\frac{x^{-6} y^{-12} \cdot x^6 y^{14}}{y^{-1}}

Simplify the numerator:

Combine the exponents in the numerator:

x6+6y12+14=x0y2=y2x^{-6 + 6} \cdot y^{-12 + 14} = x^0 \cdot y^2 = y^2

Simplify the division:

y2y1\frac{y^2}{y^{-1}}

Using the properties of exponents:

y2(1)=y2+1=y3y^{2 - (-1)} = y^{2 + 1} = y^3

So, the simplified result is:

y3\boxed{y^3}

Would you like more details on any of the steps or have any questions?

Here are some related questions for further practice:

  1. Simplify (x2y3)4(x^2 y^3)^{-4}.
  2. Simplify (a5b2)3(a1b4)2(a^5 b^{-2})^3 \cdot (a^{-1} b^4)^2.
  3. Simplify (p3q2)2(pq4)1\frac{(p^3 q^2)^{-2}}{(p q^4)^-1}.
  4. Simplify (x1y3)2(x2y2)1\frac{(x^{-1} y^3)^2}{(x^2 y^{-2})^{-1}}.
  5. Simplify (a0b2)3(a4b5)(a^0 b^2)^{-3} \cdot (a^4 b^{-5}).
  6. Simplify (m3n2)4(m2n3)2(m^3 n^2)^{-4} \cdot (m^2 n^{-3})^2.
  7. Simplify (c4d3)2(c2d2)3\frac{(c^4 d^{-3})^2}{(c^{-2} d^2)^3}.
  8. Simplify (x2y5)3(x4y2)2\frac{(x^2 y^5)^3}{(x^4 y^{-2})^2}.

Tip: When dealing with exponents, remember the power rule (am)n=amn(a^m)^n = a^{m \cdot n}, the product rule aman=am+na^m \cdot a^n = a^{m+n}, and the quotient rule aman=amn\frac{a^m}{a^n} = a^{m-n}.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Simplifying Expressions
Division of Exponents

Formulas

-

Theorems

-

Suitable Grade Level

Grades 7-9