Math Problem Statement

(-sec^2t)/(-8sint) when t=-pi/4

Solution

Let's evaluate the given expression:

sec2(t)8sin(t)\frac{-\sec^2(t)}{-8\sin(t)} when t=π4t = -\frac{\pi}{4}.

Step 1: Simplify the expression

The negative signs cancel each other out, so we can rewrite the expression as:

sec2(t)8sin(t)\frac{\sec^2(t)}{8\sin(t)}

Step 2: Find sec2(π4)\sec^2\left(-\frac{\pi}{4}\right)

Recall that sec(t)=1cos(t)\sec(t) = \frac{1}{\cos(t)}, so:

sec2(π4)=(1cos(π4))2\sec^2\left(-\frac{\pi}{4}\right) = \left(\frac{1}{\cos\left(-\frac{\pi}{4}\right)}\right)^2

Since cos(t)=cos(t)\cos(-t) = \cos(t), and cos(π4)=22\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, we have:

sec2(π4)=(122)2=2\sec^2\left(-\frac{\pi}{4}\right) = \left(\frac{1}{\frac{\sqrt{2}}{2}}\right)^2 = 2

Step 3: Find sin(π4)\sin\left(-\frac{\pi}{4}\right)

Since sin(t)=sin(t)\sin(-t) = -\sin(t), and sin(π4)=22\sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, we have:

sin(π4)=22\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}

Step 4: Substitute values

Now substitute the values for sec2(π4)=2\sec^2\left(-\frac{\pi}{4}\right) = 2 and sin(π4)=22\sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} into the expression:

28(22)=242=122\frac{2}{8 \cdot \left(-\frac{\sqrt{2}}{2}\right)} = \frac{2}{-4\sqrt{2}} = \frac{-1}{2\sqrt{2}}

Step 5: Rationalize the denominator

To rationalize the denominator, multiply both the numerator and denominator by 2\sqrt{2}:

12222=24\frac{-1}{2\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{-\sqrt{2}}{4}

Final Answer:

24\frac{-\sqrt{2}}{4}

Let me know if you'd like further details or have questions! Here are some related questions:

  1. What is the process for rationalizing denominators?
  2. How does the unit circle help in evaluating trigonometric functions at special angles?
  3. What are the properties of the secant function?
  4. How do we simplify trigonometric expressions involving negatives?
  5. Why is rationalizing the denominator important in mathematics?

Tip: Always remember that sin(t)=sin(t)\sin(-t) = -\sin(t) and cos(t)=cos(t)\cos(-t) = \cos(t) when dealing with negative angles!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Secant Function
Sine Function
Simplification
Rationalizing Denominators

Formulas

sec(t) = 1/cos(t)
sec^2(t)
sin(-t) = -sin(t)

Theorems

Pythagorean Identity
Even-Odd Trigonometric Functions

Suitable Grade Level

Grades 10-12