Math Problem Statement

square root of 3 times square root by 57 / square root of 3 minus 10

Solution

Let's simplify the given expression:

Expression:

357310\frac{\sqrt{3} \cdot \sqrt{57}}{\sqrt{3} - 10}

Step-by-step Solution:

  1. Simplify the numerator:

    • Recall the property of square roots: ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}.
    • Here, 357=357=171\sqrt{3} \cdot \sqrt{57} = \sqrt{3 \cdot 57} = \sqrt{171}.
    • So, the numerator becomes 171\sqrt{171}.
  2. Expression now becomes: 171310.\frac{\sqrt{171}}{\sqrt{3} - 10}.

  3. Simplify 171\sqrt{171}:

    • Factorize 171171: 171=357=3319=3219171 = 3 \cdot 57 = 3 \cdot 3 \cdot 19 = 3^2 \cdot 19.
    • Take the square root of 323^2: 3219=319\sqrt{3^2 \cdot 19} = 3\sqrt{19}.
    • So, 171=319\sqrt{171} = 3\sqrt{19}.
  4. Substitute back into the expression: 319310.\frac{3\sqrt{19}}{\sqrt{3} - 10}.

This is the simplified expression.


If further simplification is needed (e.g., rationalizing the denominator), let me know! 😊


Questions for Practice:

  1. Simplify 455+3\frac{\sqrt{45}}{\sqrt{5} + 3}.
  2. Find the simplified form of 850\sqrt{8} \cdot \sqrt{50}.
  3. Rationalize the denominator of 72+1\frac{7}{\sqrt{2} + 1}.
  4. Simplify 246\sqrt{24 \cdot 6}.
  5. Expand and simplify (5+2)2(\sqrt{5} + 2)^2.

Tip:

Always look for perfect squares when simplifying square roots to make calculations easier!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Square Roots
Simplification
Algebra

Formulas

\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}
\sqrt{a^2 \cdot b} = a \sqrt{b}

Theorems

Square Root Properties

Suitable Grade Level

Grades 9-11