Math Problem Statement

Simplify the expression \( \sqrt{5}(3\sqrt{10} + \sqrt{7}) \).

Solution

The problem shown is to simplify the expression:

5(310+7)\sqrt{5} \left( 3\sqrt{10} + \sqrt{7} \right)

Let’s solve step by step:


Step 1: Distribute 5\sqrt{5} to both terms inside the parentheses:

5310+57\sqrt{5} \cdot 3\sqrt{10} + \sqrt{5} \cdot \sqrt{7}


Step 2: Simplify each term:

  1. 5310\sqrt{5} \cdot 3\sqrt{10}: Combine the square roots: 3510=3503 \cdot \sqrt{5 \cdot 10} = 3 \cdot \sqrt{50} Simplify 50\sqrt{50} as 252=52\sqrt{25 \cdot 2} = 5\sqrt{2}. Thus: 350=1523 \cdot \sqrt{50} = 15\sqrt{2}

  2. 57\sqrt{5} \cdot \sqrt{7}: Combine the square roots: 57=35\sqrt{5 \cdot 7} = \sqrt{35}


Step 3: Combine the simplified terms:

152+3515\sqrt{2} + \sqrt{35}

This is the simplified expression.


Let me know if you'd like further clarification! 😊

Here are 5 related questions for practice:

  1. Simplify 312\sqrt{3} \cdot \sqrt{12}.
  2. Expand (2+5)2(\sqrt{2} + \sqrt{5})^2.
  3. Simplify 8+18\sqrt{8} + \sqrt{18}.
  4. Distribute 232\sqrt{3} across (6+2)(\sqrt{6} + \sqrt{2}).
  5. Simplify 20+45\sqrt{20} + \sqrt{45}.

Tip: Remember that combining radicals requires the same "radicand" (number inside the square root), much like combining like terms in algebra!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radical Expressions
Simplification of Square Roots
Distributive Property

Formulas

Distributive Property: a(b + c) = ab + ac
Square root simplification: \( \sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b} \)

Theorems

-

Suitable Grade Level

Grades 8-10