Math Problem Statement

  1. 1/(sqrt(6) - 2)
  2. 7/(sqrt(18) + 3)
    • 12/(sqrt(5) + 1)
  3. 3/(2sqrt(3) - 3)
  4. 6/(sqrt(8) - sqrt(5))

Solution

Let's simplify each of these expressions by rationalizing the denominator.

6. 162\frac{1}{\sqrt{6} - 2}

To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator, 6+2\sqrt{6} + 2:

162×6+26+2=6+2(6)222=6+264=6+22=62+1\frac{1}{\sqrt{6} - 2} \times \frac{\sqrt{6} + 2}{\sqrt{6} + 2} = \frac{\sqrt{6} + 2}{(\sqrt{6})^2 - 2^2} = \frac{\sqrt{6} + 2}{6 - 4} = \frac{\sqrt{6} + 2}{2} = \frac{\sqrt{6}}{2} + 1

7. 718+3\frac{7}{\sqrt{18} + 3}

Rationalize by multiplying by the conjugate 183\sqrt{18} - 3:

718+3×183183=7(183)(18)232=7(183)189=7(183)9=7189219=718973\frac{7}{\sqrt{18} + 3} \times \frac{\sqrt{18} - 3}{\sqrt{18} - 3} = \frac{7(\sqrt{18} - 3)}{(\sqrt{18})^2 - 3^2} = \frac{7(\sqrt{18} - 3)}{18 - 9} = \frac{7(\sqrt{18} - 3)}{9} = \frac{7\sqrt{18}}{9} - \frac{21}{9} = \frac{7\sqrt{18}}{9} - \frac{7}{3}

Since 18=32\sqrt{18} = 3\sqrt{2}:

7189=7×329=723\frac{7\sqrt{18}}{9} = \frac{7 \times 3\sqrt{2}}{9} = \frac{7\sqrt{2}}{3}

Final result:

72373=7(21)3\frac{7\sqrt{2}}{3} - \frac{7}{3} = \frac{7(\sqrt{2} - 1)}{3}

8. 125+1\frac{-12}{\sqrt{5} + 1}

Rationalize by multiplying by the conjugate 51\sqrt{5} - 1:

[ \frac{-12}{\sqrt{5} + 1} \times \frac{\sqrt{5} - 1}{\sqrt{5} - 1} = \frac{-12

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rationalization
Conjugate
Square Roots

Formulas

-

Theorems

-

Suitable Grade Level

High School