Math Problem Statement

Simplify the given expression \( \left( \frac{\sqrt{64a^{12}}}{(d^{1.5})^{-6}} \right)^{\frac{2}{3}} \) into rational form with positive exponents.

Solution

Let's solve the given problem step by step. The expression is:

(64a12(d1.5)6)23\left( \frac{\sqrt{64a^{12}}}{(d^{1.5})^{-6}} \right)^{\frac{2}{3}}

Step 1: Simplify the square root in the numerator

64a12=64a12=8a6\sqrt{64a^{12}} = \sqrt{64} \cdot \sqrt{a^{12}} = 8a^6

So the numerator becomes: 8a68a^6

Step 2: Simplify the denominator

The denominator is (d1.5)6(d^{1.5})^{-6}. Using the property of exponents (xm)n=xmn(x^m)^n = x^{m \cdot n}, we get: (d1.5)6=d1.5(6)=d9(d^{1.5})^{-6} = d^{1.5 \cdot (-6)} = d^{-9}

So the denominator becomes: d9d^{-9}

Step 3: Combine numerator and denominator

64a12(d1.5)6=8a6d9\frac{\sqrt{64a^{12}}}{(d^{1.5})^{-6}} = \frac{8a^6}{d^{-9}} Since d9d^{-9} in the denominator moves to the numerator as d9d^9: 8a6d9=8a6d9\frac{8a^6}{d^{-9}} = 8a^6d^9

Step 4: Apply the outer exponent 23\frac{2}{3}

We now raise 8a6d98a^6d^9 to the power of 23\frac{2}{3}: (8a6d9)23(8a^6d^9)^{\frac{2}{3}}

Using the property of exponents (xmynzp)q=xmqynqzpq(x^m y^n z^p)^q = x^{m \cdot q} y^{n \cdot q} z^{p \cdot q}, we distribute the exponent 23\frac{2}{3} to each term: 823a623d9238^{\frac{2}{3}} \cdot a^{6 \cdot \frac{2}{3}} \cdot d^{9 \cdot \frac{2}{3}}

Step 5: Simplify each term

  1. 8238^{\frac{2}{3}}: Since 8=238 = 2^3, we have: 823=(23)23=2323=22=48^{\frac{2}{3}} = (2^3)^{\frac{2}{3}} = 2^{3 \cdot \frac{2}{3}} = 2^2 = 4

  2. a623=a4a^{6 \cdot \frac{2}{3}} = a^4

  3. d923=d6d^{9 \cdot \frac{2}{3}} = d^6

Final Simplified Expression:

4a4d64a^4d^6

Let me know if you'd like further clarification or details! Below are related practice questions for additional understanding.


Related Questions:

  1. Simplify (x4y2)12(x^4 y^{-2})^{\frac{1}{2}}.
  2. Rewrite (27a3b6)23(27a^3b^6)^{\frac{2}{3}} in simplified form.
  3. Simplify 16x10y4\frac{\sqrt{16x^{10}}}{y^{-4}}.
  4. Evaluate (125m9n12)13(125m^9n^{-12})^{\frac{1}{3}}.
  5. Simplify (x0.5y2)3(x^{0.5}y^{-2})^{-3}.

Tip:

When simplifying exponents, always apply the rules of powers systematically (e.g., product, quotient, and power rules) to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents and Powers
Square Roots
Simplifying Rational Expressions

Formulas

Power Rule: \((x^m)^n = x^{m \cdot n}\)
Fractional Exponent Rule: \(x^{m/n} = \sqrt[n]{x^m}\)
Negative Exponent Rule: \(x^{-n} = \frac{1}{x^n}\)

Theorems

-

Suitable Grade Level

Grades 10-12