Math Problem Statement

simplify 25798901760 x^15 + 693345484800 x^14 + 8115994091520 x^13 + 53215051645440 x^12 + 209637356788224 x^11 + 492901990565184 x^10 + 633914720020224 x^9 + 330212258682354 x^8 - 25078464308256 x^7-(537477120 x^13 + 10592778240 x^12 + 86266944000 x^11 + 344449304064 x^10 + 648770329440 x^9 + 430886211768 x^8 - 40689774432 x^7)

Solution

To simplify the given expression, we will combine like terms. The expression is:

25798901760x15+693345484800x14+8115994091520x13+53215051645440x12+209637356788224x11+492901990565184x10+633914720020224x9+330212258682354x825078464308256x725798901760 x^{15} + 693345484800 x^{14} + 8115994091520 x^{13} + 53215051645440 x^{12} + 209637356788224 x^{11} + 492901990565184 x^{10} + 633914720020224 x^{9} + 330212258682354 x^{8} - 25078464308256 x^{7} (537477120x13+10592778240x12+86266944000x11+344449304064x10+648770329440x9+430886211768x840689774432x7)-(537477120 x^{13} + 10592778240 x^{12} + 86266944000 x^{11} + 344449304064 x^{10} + 648770329440 x^{9} + 430886211768 x^{8} - 40689774432 x^{7})

Step-by-step Simplification:

  1. Distribute the negative sign to each term inside the parentheses:

25798901760x15+693345484800x14+8115994091520x13+53215051645440x12+209637356788224x11+492901990565184x10+633914720020224x9+330212258682354x825078464308256x725798901760 x^{15} + 693345484800 x^{14} + 8115994091520 x^{13} + 53215051645440 x^{12} + 209637356788224 x^{11} + 492901990565184 x^{10} + 633914720020224 x^{9} + 330212258682354 x^{8} - 25078464308256 x^{7} 537477120x1310592778240x1286266944000x11344449304064x10648770329440x9430886211768x8+40689774432x7- 537477120 x^{13} - 10592778240 x^{12} - 86266944000 x^{11} - 344449304064 x^{10} - 648770329440 x^{9} - 430886211768 x^{8} + 40689774432 x^{7}

  1. Now combine like terms for each power of xx.
  • For x15x^{15}:
    25798901760x1525798901760 x^{15}
    (No other terms for x15x^{15}, so this stays the same.)

  • For x14x^{14}:
    693345484800x14693345484800 x^{14}
    (No other terms for x14x^{14}, so this stays the same.)

  • For x13x^{13}:
    8115994091520x13537477120x13=8115994091520x13537477120x13=7578516974400x138115994091520 x^{13} - 537477120 x^{13} = 8115994091520 x^{13} - 537477120 x^{13} = 7578516974400 x^{13}

  • For x12x^{12}:
    53215051645440x1210592778240x12=53215051645440x1210592778240x12=53204458867200x1253215051645440 x^{12} - 10592778240 x^{12} = 53215051645440 x^{12} - 10592778240 x^{12} = 53204458867200 x^{12}

  • For x11x^{11}:
    209637356788224x1186266944000x11=209637356788224x1186266944000x11=209551089844224x11209637356788224 x^{11} - 86266944000 x^{11} = 209637356788224 x^{11} - 86266944000 x^{11} = 209551089844224 x^{11}

  • For x10x^{10}:
    492901990565184x10344449304064x10=492901990565184x10344449304064x10=492557541261120x10492901990565184 x^{10} - 344449304064 x^{10} = 492901990565184 x^{10} - 344449304064 x^{10} = 492557541261120 x^{10}

  • For x9x^{9}:
    633914720020224x9648770329440x9=633914720020224x9648770329440x9=633914071249792x9633914720020224 x^{9} - 648770329440 x^{9} = 633914720020224 x^{9} - 648770329440 x^{9} = 633914071249792 x^{9}

  • For x8x^{8}:
    330212258682354x8430886211768x8=330212258682354x8430886211768x8=329781372471586x8330212258682354 x^{8} - 430886211768 x^{8} = 330212258682354 x^{8} - 430886211768 x^{8} = 329781372471586 x^{8}

  • For x7x^{7}:
    25078464308256x7+40689774432x7=25078464308256x7+40689774432x7=25037774533824x7-25078464308256 x^{7} + 40689774432 x^{7} = -25078464308256 x^{7} + 40689774432 x^{7} = -25037774533824 x^{7}

Final Simplified Expression:

25798901760x15+693345484800x14+7578516974400x13+53204458867200x12+209551089844224x11+492557541261120x10+633914071249792x9+329781372471586x825037774533824x725798901760 x^{15} + 693345484800 x^{14} + 7578516974400 x^{13} + 53204458867200 x^{12} + 209551089844224 x^{11} + 492557541261120 x^{10} + 633914071249792 x^{9} + 329781372471586 x^{8} - 25037774533824 x^{7}

Would you like more details on the steps or have any questions about this simplification?

Here are some related questions:

  1. How do you factor polynomials with multiple terms?
  2. What is the general method for combining like terms in polynomials?
  3. How can you simplify an expression with exponents greater than 1?
  4. What are the rules for distributing negative signs across terms in an expression?
  5. How do you solve polynomial equations?

Tip: When simplifying polynomials, always make sure to check the exponents of the terms to ensure that you're combining the correct ones!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomials
Simplifying Expressions
Combining Like Terms
Distributive Property

Formulas

a x^n + b x^n = (a + b) x^n for like terms

Theorems

Combining Like Terms Theorem
Distributive Property

Suitable Grade Level

Grades 9-11