Math Problem Statement

Simplify. Write with positive exponents. Assume that all variables represent positive real numbers. left parenthesis StartFraction p Superscript negative 1 divided by 5 Baseline q Superscript negative 3 divided by 2 Over 4 Superscript negative 1 Baseline p Superscript negative 3 Baseline q Superscript negative 1 divided by 3 EndFraction right parenthesis Superscript negative 3 Question content area bottom Part 1 left parenthesis StartFraction p Superscript negative 1 divided by 5 Baseline q Superscript negative 3 divided by 2 Over 4 Superscript negative 1 Baseline p Superscript negative 3 Baseline q Superscript negative 1 divided by 3 EndFraction right parenthesis Superscript negative 3 equals    enter your response here ​(Simplify your answer. Type exponential notation with positive​ exponents.)

Solution

We aim to simplify the given expression step-by-step, rewriting it with positive exponents.

Given Expression:

(p1/5q3/241p3q1/3)3\left( \frac{p^{-1/5} q^{-3/2}}{4^{-1} p^{-3} q^{-1/3}} \right)^{-3}

Step 1: Simplify the fraction inside the parentheses

Group the terms in the numerator and denominator:

  • Numerator: p1/5q3/2p^{-1/5} q^{-3/2}
  • Denominator: 41p3q1/34^{-1} p^{-3} q^{-1/3}

Combine powers of pp, qq, and constants: p1/5q3/241p3q1/3=41p1/5(3)q3/2(1/3)\frac{p^{-1/5} q^{-3/2}}{4^{-1} p^{-3} q^{-1/3}} = 4^{1} \cdot p^{-1/5 - (-3)} \cdot q^{-3/2 - (-1/3)}

Simplify the exponents:

  1. For pp: 1/5(3)=1/5+3=14/5-1/5 - (-3) = -1/5 + 3 = 14/5
  2. For qq: 3/2(1/3)=3/2+1/3=9/6+2/6=7/6-3/2 - (-1/3) = -3/2 + 1/3 = -9/6 + 2/6 = -7/6

So the expression becomes: 4p14/5q7/64 \cdot p^{14/5} \cdot q^{-7/6}

Step 2: Apply the outer exponent (3)(-3)

Raise each term to the power of 3-3: (4p14/5q7/6)3=43(p14/5)3(q7/6)3\left( 4 \cdot p^{14/5} \cdot q^{-7/6} \right)^{-3} = 4^{-3} \cdot \left(p^{14/5}\right)^{-3} \cdot \left(q^{-7/6}\right)^{-3}

Simplify each term:

  1. 43=1/43=1/644^{-3} = 1/4^3 = 1/64
  2. (p14/5)3=p(14/5)3=p42/5\left(p^{14/5}\right)^{-3} = p^{-(14/5) \cdot 3} = p^{-42/5}
  3. (q7/6)3=q(7/6)(3)=q21/6=q7/2\left(q^{-7/6}\right)^{-3} = q^{(-7/6) \cdot (-3)} = q^{21/6} = q^{7/2}

Combine the results: 164p42/5q7/2\frac{1}{64} \cdot p^{-42/5} \cdot q^{7/2}

Step 3: Write with positive exponents

Rewrite p42/5p^{-42/5} as 1/p42/51/p^{42/5}. The final simplified expression is: q7/264p42/5\frac{q^{7/2}}{64 \cdot p^{42/5}}

Final Answer:

q7/264p42/5\boxed{\frac{q^{7/2}}{64p^{42/5}}}

Would you like me to elaborate on any part of the solution?


Related Questions:

  1. How do you simplify expressions involving negative exponents?
  2. What are the steps to combine like terms in fractional exponents?
  3. Why do we rewrite expressions with positive exponents?
  4. How do we handle constants with negative powers, such as 414^{-1}?
  5. Can you provide another example of a similar simplification?

Tip:

Always simplify exponents before applying outer powers to reduce computational errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying expressions
Negative exponents
Fractional exponents
Exponent rules

Formulas

a^m / a^n = a^(m-n)
(a^m)^n = a^(m*n)
Negative exponent: a^(-n) = 1/a^n

Theorems

Laws of exponents

Suitable Grade Level

Grades 10-12