Math Problem Statement

Simplify, multiply, and tidy up algebraic expressions as shown in the image.

Solution

Let's start by addressing the questions one by one from the image you've uploaded. I'll simplify each expression for you.

Question 4: Simplify each of the following:

(a) 2a+8b+7a5b2a + 8b + 7a - 5b
Combine like terms:
(2a+7a)+(8b5b)=9a+3b(2a + 7a) + (8b - 5b) = 9a + 3b

Answer: 9a+3b9a + 3b

(b) 4m+3n+7+6m4n10-4m + 3n + 7 + 6m - 4n - 10
Combine like terms:
(4m+6m)+(3n4n)+(710)=2mn3(-4m + 6m) + (3n - 4n) + (7 - 10) = 2m - n - 3

Answer: 2mn32m - n - 3

(c) 7x2+8x+163x2+5x+127x^2 + 8x + 16 - 3x^2 + 5x + 12
Combine like terms:
(7x23x2)+(8x+5x)+(16+12)=4x2+13x+28(7x^2 - 3x^2) + (8x + 5x) + (16 + 12) = 4x^2 + 13x + 28

Answer: 4x2+13x+284x^2 + 13x + 28

(d) 11ab+99ab+4ab11ab + 9 - 9ab + 4 - ab
Combine like terms:
(11ab9abab)+(9+4)=ab+13(11ab - 9ab - ab) + (9 + 4) = ab + 13

Answer: ab+13ab + 13

(e) 9g2+3f+2+6f+14g29g^2 + 3f + 2 + 6f + 1 - 4g^2
Combine like terms:
(9g24g2)+(3f+6f)+(2+1)=5g2+9f+3(9g^2 - 4g^2) + (3f + 6f) + (2 + 1) = 5g^2 + 9f + 3

Answer: 5g2+9f+35g^2 + 9f + 3


Question 5: Multiply and tidy up each of the following:

(a) 2(3x+4y+8)+5(7x+9y+3)2(3x + 4y + 8) + 5(7x + 9y + 3)
Expand both terms:
2(3x+4y+8)=6x+8y+162(3x + 4y + 8) = 6x + 8y + 16
5(7x+9y+3)=35x+45y+155(7x + 9y + 3) = 35x + 45y + 15
Combine like terms:
(6x+35x)+(8y+45y)+(16+15)=41x+53y+31(6x + 35x) + (8y + 45y) + (16 + 15) = 41x + 53y + 31

Answer: 41x+53y+3141x + 53y + 31

(b) 7(4x2y5)3(2x5y8)7(4x - 2y - 5) - 3(2x - 5y - 8)
Expand both terms:
7(4x2y5)=28x14y357(4x - 2y - 5) = 28x - 14y - 35
3(2x5y8)=6x+15y+24-3(2x - 5y - 8) = -6x + 15y + 24
Combine like terms:
(28x6x)+(14y+15y)+(35+24)=22x+y11(28x - 6x) + (-14y + 15y) + (-35 + 24) = 22x + y - 11

Answer: 22x+y1122x + y - 11

(c) 6(2a+5b8)5(4a8b1)6(2a + 5b - 8) - 5(4a - 8b - 1)
Expand both terms:
6(2a+5b8)=12a+30b486(2a + 5b - 8) = 12a + 30b - 48
5(4a8b1)=20a+40b+5-5(4a - 8b - 1) = -20a + 40b + 5
Combine like terms:
(12a20a)+(30b+40b)+(48+5)=8a+70b43(12a - 20a) + (30b + 40b) + (-48 + 5) = -8a + 70b - 43

Answer: 8a+70b43-8a + 70b - 43

(d) 4(3c+5d2)+6(2c+8d3)4(3c + 5d - 2) + 6(2c + 8d - 3)
Expand both terms:
4(3c+5d2)=12c+20d84(3c + 5d - 2) = 12c + 20d - 8
6(2c+8d3)=12c+48d186(2c + 8d - 3) = 12c + 48d - 18
Combine like terms:
(12c+12c)+(20d+48d)+(818)=24c+68d26(12c + 12c) + (20d + 48d) + (-8 - 18) = 24c + 68d - 26

Answer: 24c+68d2624c + 68d - 26

(e) 3(5g+8h3)4(2g+6h+5)3(5g + 8h - 3) - 4(2g + 6h + 5)
Expand both terms:
3(5g+8h3)=15g+24h93(5g + 8h - 3) = 15g + 24h - 9
4(2g+6h+5)=8g24h20-4(2g + 6h + 5) = -8g - 24h - 20
Combine like terms:
(15g8g)+(24h24h)+(920)=7g29(15g - 8g) + (24h - 24h) + (-9 - 20) = 7g - 29

Answer: 7g297g - 29


Question 6: Multiply out each of the following:

(a) 5x(3x26)5x(3x^2 - 6)
Distribute 5x5x:
5x(3x26)=15x330x5x(3x^2 - 6) = 15x^3 - 30x

Answer: 15x330x15x^3 - 30x

(b) 7p(4+2p2)7p(4 + 2p^2)
Distribute 7p7p:
7p(4+2p2)=28p+14p37p(4 + 2p^2) = 28p + 14p^3

Answer: 28p+14p328p + 14p^3

(c) 4h(6h25)4h(6h^2 - 5)
Distribute 4h4h:
4h(6h25)=24h320h4h(6h^2 - 5) = 24h^3 - 20h

Answer: 24h320h24h^3 - 20h

(d) 8t(2t2+7)8t(2t^2 + 7)
Distribute 8t8t:
8t(2t2+7)=16t3+56t8t(2t^2 + 7) = 16t^3 + 56t

Answer: 16t3+56t16t^3 + 56t

(e) 3c(83c2)3c(8 - 3c^2)
Distribute 3c3c:
3c(83c2)=24c9c33c(8 - 3c^2) = 24c - 9c^3

Answer: 24c9c324c - 9c^3


Let me know if you need any further clarification or details!


Here are 5 follow-up questions you could explore:

  1. How do you factor polynomials like 15x330x15x^3 - 30x once expanded?
  2. Can you explain how to simplify expressions involving more variables, like 11ab+99ab11ab + 9 - 9ab?
  3. What strategies can help when distributing negative signs in expressions like in question 5(b)?
  4. How can you simplify expressions involving powers, such as 24h320h24h^3 - 20h?
  5. What is the best way to verify your work after simplifying complex expressions?

Tip: When simplifying or expanding expressions, always double-check signs (positive or negative) as they often lead to common mistakes!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplifying Expressions
Distributive Property

Formulas

Combine like terms: ax + bx = (a+b)x
Distributive Property: a(b + c) = ab + ac

Theorems

-

Suitable Grade Level

Grades 7-10