Math Problem Statement

Simplify the statement form below in no more than 9 steps. Make sure you do not skip any step, and every step must be justified by a law. Do not combine two steps of the same law in a single step. Use true and false for tautology and contradiction respectively. (This question checks that you apply the laws rigorously and cite them correctly, so we will be strict in our grading.) [4 marks] (𝒑 ∧ (𝒑 → 𝒓 ∨ 𝒒)) ∧ (𝒓 → 𝒒)

Solution

Let's simplify the statement (p(prq))(rq)(p \land (p \to r \lor q)) \land (r \to q) step by step, citing the appropriate logical laws at each stage.

Expression:

(p(prq))(rq)(p \land (p \to r \lor q)) \land (r \to q)


Step 1: Replace the implication prqp \to r \lor q with its equivalent using the implication law pA¬pAp \to A \equiv \neg p \lor A.

(p(¬p(rq)))(rq)(p \land (\neg p \lor (r \lor q))) \land (r \to q)

Justification: Implication law pA¬pAp \to A \equiv \neg p \lor A.


Step 2: Replace the second implication rqr \to q with its equivalent form rq¬rqr \to q \equiv \neg r \lor q.

(p(¬p(rq)))(¬rq)(p \land (\neg p \lor (r \lor q))) \land (\neg r \lor q)

Justification: Implication law rq¬rqr \to q \equiv \neg r \lor q.


Step 3: Apply the distributive property of \land over \lor to the entire conjunction (p(¬p(rq)))(¬rq)(p \land (\neg p \lor (r \lor q))) \land (\neg r \lor q).

((p(¬p(rq)))(¬rq))((p \land (\neg p \lor (r \lor q))) \land (\neg r \lor q))


Step 4: Simplify p(¬p(rq))p \land (\neg p \lor (r \lor q)) using distribution. First, distribute p¬pp \land \neg p and p(rq)p \land (r \lor q):

((p¬p)(p(rq)))(¬rq)((p \land \neg p) \lor (p \land (r \lor q))) \land (\neg r \lor q)

Justification: Distributive law p(AB)(pA)(pB)p \land (A \lor B) \equiv (p \land A) \lor (p \land B).


Step 5: Simplify p¬pp \land \neg p to false (contradiction):

(false(p(rq)))(¬rq)(\text{false} \lor (p \land (r \lor q))) \land (\neg r \lor q)

Justification: Contradiction law p¬pfalsep \land \neg p \equiv \text{false}.


Step 6: Simplify false(p(rq))\text{false} \lor (p \land (r \lor q)) to p(rq)p \land (r \lor q), as falseAA\text{false} \lor A \equiv A.

(p(rq))(¬rq)(p \land (r \lor q)) \land (\neg r \lor q)

Justification: Identity law falseAA\text{false} \lor A \equiv A.


Step 7: Distribute \land over \lor for (p(rq))(¬rq)(p \land (r \lor q)) \land (\neg r \lor q).

((pr)(pq))(¬rq)((p \land r) \lor (p \land q)) \land (\neg r \lor q)

Justification: Distributive law A(BC)(AB)(AC)A \land (B \lor C) \equiv (A \land B) \lor (A \land C).


Step 8: Apply distribution again for ((pr)(pq))(¬rq)((p \land r) \lor (p \land q)) \land (\neg r \lor q).

((pr¬r)(prq)(pq¬r)(pqq))((p \land r \land \neg r) \lor (p \land r \land q) \lor (p \land q \land \neg r) \lor (p \land q \land q))

Justification: Distributive law for conjunction and disjunction.


Step 9: Simplify pr¬rp \land r \land \neg r to false and pqqp \land q \land q to pqp \land q, as A¬AfalseA \land \neg A \equiv \text{false} and AAAA \land A \equiv A:

false(prq)(pq¬r)(pq)\text{false} \lor (p \land r \land q) \lor (p \land q \land \neg r) \lor (p \land q)

Now, simplify the expression by removing the false\text{false} and redundant pqp \land q:

pqp \land q

Justification: Absorption law AAAA \lor A \equiv A and identity law for false.


Final Simplified Expression:

pqp \land q

Let me know if you need further explanation on any step or want more details.

Here are five related questions:

  1. How does the implication law apply to logical statements?
  2. Why is p¬pp \land \neg p always false?
  3. What is the absorption law and how is it used in simplifications?
  4. How does distribution work between conjunction and disjunction?
  5. Can the identity law apply when both terms in a disjunction are true?

Tip: Always check for contradictions like p¬pp \land \neg p, as they simplify to false.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Logical Equivalence
Boolean Algebra

Formulas

Implication Law (p → A ≡ ¬p ∨ A)
Distributive Law
Contradiction Law (p ∧ ¬p ≡ false)
Absorption Law
Identity Law

Theorems

Implication Theorem
Distributive Property of Conjunction over Disjunction
Contradiction Theorem
Absorption Theorem

Suitable Grade Level

College-level logic or discrete mathematics