Math Problem Statement

Rewrite the expression log_5 ( (√6 (4x + 1)) / (4x^2) ) as a sum, difference, or product of logarithms, and simplify if possible.

Solution

To simplify the logarithmic expression
log5(4x+164x2),\log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right), we will apply the logarithmic rules step-by-step:

  1. Quotient Rule: logb(AB)=logb(A)logb(B)\log_b \left( \frac{A}{B} \right) = \log_b (A) - \log_b (B).
  2. Power Rule: logb(An)=nlogb(A)\log_b (A^n) = n \log_b (A).

Step-by-step Solution

  1. Start with the given expression:
    log5(4x+164x2).\log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right).
    Apply the quotient rule:
    [ \log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right) = \log_5 (\sqrt[6]{4x + 1}) - \log_5 (4x^2). ]

  2. Simplify each term:

    • For log5(4x+16)\log_5 (\sqrt[6]{4x + 1}), use the power rule:
      log5(4x+16)=16log5(4x+1).\log_5 (\sqrt[6]{4x + 1}) = \frac{1}{6} \log_5 (4x + 1).

    • For log5(4x2)\log_5 (4x^2), rewrite as a product:
      log5(4x2)=log5(4)+log5(x2).\log_5 (4x^2) = \log_5 (4) + \log_5 (x^2).
      Apply the power rule to log5(x2)\log_5 (x^2):
      log5(x2)=2log5(x).\log_5 (x^2) = 2 \log_5 (x).
      Thus:
      log5(4x2)=log5(4)+2log5(x).\log_5 (4x^2) = \log_5 (4) + 2 \log_5 (x).

  3. Substitute back into the original expression:
    [ \log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right) = \frac{1}{6} \log_5 (4x + 1) - \left[ \log_5 (4) + 2 \log_5 (x) \right]. ]

  4. Simplify further:
    Distribute the negative sign:
    log5(4x+164x2)=16log5(4x+1)log5(4)2log5(x).\log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right) = \frac{1}{6} \log_5 (4x + 1) - \log_5 (4) - 2 \log_5 (x).


Final Answer:

The correct option is:
log5(4x+164x2)=16log5(4x+1)2log5(x)log5(4).\log_5 \left( \frac{\sqrt[6]{4x + 1}}{4x^2} \right) = \frac{1}{6} \log_5 (4x + 1) - 2 \log_5 (x) - \log_5 (4).

This matches Option 1.


Do you need further clarification?

Here are 5 related questions you might find useful:

  1. How do you apply the quotient rule in logarithms?
  2. What is the power rule for logarithms and how is it used?
  3. How can you rewrite logarithms of products and powers?
  4. What is the significance of simplifying logarithmic expressions?
  5. Can you explain the steps for simplifying a nested logarithmic expression?

Tip: Always rewrite roots as fractional powers before applying logarithmic rules. This simplifies calculations greatly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Properties
Simplification of Logarithmic Expressions

Formulas

log_b (A / B) = log_b (A) - log_b (B)
log_b (A^n) = n * log_b (A)
Roots as fractional exponents: A^(1/n)

Theorems

Properties of Logarithms

Suitable Grade Level

Grade 10-12