Math Problem Statement

simplify \log_{15}^{2}3+\frac{\log_{15}45}{\log_{5}15}

Solution

The given expression to simplify is:

log1523+log1545log515\log_{15}^{2} 3 + \frac{\log_{15} 45}{\log_{5} 15}

Step 1: Simplify the first term, log1523\log_{15}^{2} 3.

This term can be written as:

(log153)2\left(\log_{15} 3\right)^2

Step 2: Simplify the second term, log1545log515\frac{\log_{15} 45}{\log_{5} 15}.

First, let's break down log1545\log_{15} 45 using the change of base formula:

log1545=log45log15\log_{15} 45 = \frac{\log 45}{\log 15}

Similarly, express log515\log_{5} 15 using the change of base formula:

log515=log15log5\log_{5} 15 = \frac{\log 15}{\log 5}

Now, substitute these into the expression:

log1545log515=log45log15log15log5=log45log15×log5log15=log45log5(log15)2\frac{\log_{15} 45}{\log_{5} 15} = \frac{\frac{\log 45}{\log 15}}{\frac{\log 15}{\log 5}} = \frac{\log 45}{\log 15} \times \frac{\log 5}{\log 15} = \frac{\log 45 \cdot \log 5}{(\log 15)^2}

Step 3: Break down log45\log 45 and simplify.

Notice that:

log45=log(3×15)=log3+log15\log 45 = \log (3 \times 15) = \log 3 + \log 15

So, the expression becomes:

(log3+log15)log5(log15)2\frac{(\log 3 + \log 15) \cdot \log 5}{(\log 15)^2}

Distribute log5\log 5 in the numerator:

log3log5+(log15)log5(log15)2\frac{\log 3 \cdot \log 5 + (\log 15) \cdot \log 5}{(\log 15)^2}

This can be separated into two fractions:

log3log5(log15)2+(log15)log5(log15)2\frac{\log 3 \cdot \log 5}{(\log 15)^2} + \frac{(\log 15) \cdot \log 5}{(\log 15)^2}

The second fraction simplifies to:

log5log15\frac{\log 5}{\log 15}

So the original expression becomes:

(log153)2+log3log5(log15)2+log5log15\left(\log_{15} 3\right)^2 + \frac{\log 3 \cdot \log 5}{(\log 15)^2} + \frac{\log 5}{\log 15}

Step 4: Express everything in terms of logarithms to base 15.

Notice that:

log153=log3log15andlog155=log5log15\log_{15} 3 = \frac{\log 3}{\log 15} \quad \text{and} \quad \log_{15} 5 = \frac{\log 5}{\log 15}

Substituting back, the expression becomes:

(log153)2+log153log155+log155\left(\log_{15} 3\right)^2 + \log_{15} 3 \cdot \log_{15} 5 + \log_{15} 5

Final Answer:

The simplified expression is:

(log153+log155)2=(log1515)2=1\left(\log_{15} 3 + \log_{15} 5\right)^2 = \left(\log_{15} 15\right)^2 = 1

So, the original expression simplifies to 11.

Would you like more details or have any further questions?

Related Questions:

  1. How would the expression change if the base was 10 instead of 15?
  2. Can the expression be generalized for any base bb?
  3. What is the value of log153\log_{15} 3 and log515\log_{5} 15 approximately?
  4. How would the expression change if log1545\log_{15} 45 was replaced with log1527\log_{15} 27?
  5. Can this expression be simplified using properties of exponents?

Tip:

Always check if logarithmic expressions can be simplified by combining or expanding them using properties like log(ab)=loga+logb\log(ab) = \log a + \log b.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Change of Base Formula
Properties of Logarithms

Formulas

Change of Base Formula: \( \log_a b = \frac{\log b}{\log a} \)

Theorems

-

Suitable Grade Level

Advanced High School