Math Problem Statement

3ln(x(^3)y)+2ln(yz^2)

Solution

Let's simplify the given logarithmic expression step by step:

Expression:

3ln(x3y)+2ln(yz2)3\ln(x^3 y) + 2\ln(yz^2)

Step 1: Expand the logarithms using logarithmic properties.

Using the property ln(ab)=ln(a)+ln(b)\ln(a \cdot b) = \ln(a) + \ln(b):

3ln(x3y)=3[ln(x3)+ln(y)]3\ln(x^3 y) = 3[\ln(x^3) + \ln(y)] 2ln(yz2)=2[ln(y)+ln(z2)]2\ln(yz^2) = 2[\ln(y) + \ln(z^2)]

So the expression becomes: [ 3[\ln(x^3) + \ln(y)] + 2[\ln(y) + \ln(z^2)] ]

Step 2: Apply the power rule.

Using the property ln(ab)=bln(a)\ln(a^b) = b \cdot \ln(a):

ln(x3)=3ln(x),ln(z2)=2ln(z)\ln(x^3) = 3\ln(x), \quad \ln(z^2) = 2\ln(z)

Substituting these, we get: [ 3[3\ln(x) + \ln(y)] + 2[\ln(y) + 2\ln(z)] ]

Step 3: Distribute the coefficients.

9ln(x)+3ln(y)+2ln(y)+4ln(z)9\ln(x) + 3\ln(y) + 2\ln(y) + 4\ln(z)

Step 4: Combine like terms.

9ln(x)+(3ln(y)+2ln(y))+4ln(z)9\ln(x) + (3\ln(y) + 2\ln(y)) + 4\ln(z) 9ln(x)+5ln(y)+4ln(z)9\ln(x) + 5\ln(y) + 4\ln(z)

Final Simplified Expression:

9ln(x)+5ln(y)+4ln(z)9\ln(x) + 5\ln(y) + 4\ln(z)


Would you like more details or have any questions?
Here are 5 related questions to consider:

  1. What are the properties of logarithms and how do they apply?
  2. How can logarithmic expressions be simplified for calculus problems?
  3. How does the power rule for logarithms help in expansions?
  4. Why is it useful to combine like terms in logarithmic expressions?
  5. Can you demonstrate these steps for a similar problem, like 2ln(xy3)+ln(yz2)2\ln(xy^3) + \ln(yz^2)?

Tip: Always check if terms in logarithmic expressions can be combined or simplified to reduce complexity before proceeding with further calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms
Simplification of Logarithmic Expressions

Formulas

ln(a * b) = ln(a) + ln(b)
ln(a^b) = b * ln(a)

Theorems

Logarithmic Properties

Suitable Grade Level

Grades 10-12