Math Problem Statement

Simplify and analyze logarithmic and exponential expressions from the provided image, converting all logarithms into natural logarithmic expressions and determining the domain of x.

Solution

I see you've uploaded an image of a math problem related to logarithmic and exponential expressions. I will solve the tasks step by step. Here’s how I’ll proceed:

Problem Breakdown:

  1. Simplify the expressions using logarithmic and exponential rules.
  2. Convert all logarithms to natural logarithms (ln\ln).
  3. Identify the domain for xx wherever necessary.

Let me start with each subproblem:


a) exp(3ln4)\sqrt{\exp(3 \ln 4)}

\exp(3 \ln 4) = 4^3 \quad \text{(since \exp(a \ln b) = b^a)} exp(3ln4)=43=8\sqrt{\exp(3 \ln 4)} = \sqrt{4^3} = 8

Answer: 88


b) exp((x+2)24)ex3\sqrt[3]{\frac{\exp((x+2)^2 - 4)}{e^x}}

exp((x+2)24)=e(x+2)2e4\exp((x+2)^2 - 4) = e^{(x+2)^2} \cdot e^{-4} exp((x+2)24)ex=e(x+2)2x4\frac{\exp((x+2)^2 - 4)}{e^x} = e^{(x+2)^2 - x - 4} Taking the cube root: exp((x+2)24)ex3=e(x+2)2x43\sqrt[3]{\frac{\exp((x+2)^2 - 4)}{e^x}} = e^{\frac{(x+2)^2 - x - 4}{3}}

Answer: e(x+2)2x43e^{\frac{(x+2)^2 - x - 4}{3}}


c) log2(ex)\log_2(\sqrt{e^x})

ex=ex/2\sqrt{e^x} = e^{x/2} log2(ex/2)=x2log2(e)\log_2(e^{x/2}) = \frac{x}{2} \cdot \log_2(e)

Answer: x2log2(e)\frac{x}{2} \log_2(e)


d) 12log2(4e2)(ln2)1\frac{1}{2} \log_2(4e^2) - (\ln 2)^{-1}

log2(4e2)=log2(4)+log2(e2)=2+2log2(e)\log_2(4e^2) = \log_2(4) + \log_2(e^2) = 2 + 2\log_2(e) 12log2(4e2)=12(2+2log2(e))=1+log2(e)\frac{1}{2} \log_2(4e^2) = \frac{1}{2}(2 + 2\log_2(e)) = 1 + \log_2(e) (ln2)1=1ln2=log2(e)(\ln 2)^{-1} = \frac{1}{\ln 2} = \log_2(e) 12log2(4e2)(ln2)1=1+log2(e)log2(e)=1\frac{1}{2} \log_2(4e^2) - (\ln 2)^{-1} = 1 + \log_2(e) - \log_2(e) = 1

Answer: 11


e) ln(x23)ln(x43)\ln\left(\frac{x^2}{3}\right) - \ln\left(\sqrt[3]{\frac{x}{4}}\right)

ln(x23)ln(x43)=ln(x23)13ln(x4)\ln\left(\frac{x^2}{3}\right) - \ln\left(\sqrt[3]{\frac{x}{4}}\right) = \ln\left(\frac{x^2}{3}\right) - \frac{1}{3} \ln\left(\frac{x}{4}\right) =ln(x23)13(lnxln4)= \ln\left(\frac{x^2}{3}\right) - \frac{1}{3} (\ln x - \ln 4) =lnx2ln313lnx+13ln4= \ln x^2 - \ln 3 - \frac{1}{3} \ln x + \frac{1}{3} \ln 4 =53lnxln3+13ln4= \frac{5}{3} \ln x - \ln 3 + \frac{1}{3} \ln 4

Answer: 53lnxln3+13ln4\frac{5}{3} \ln x - \ln 3 + \frac{1}{3} \ln 4


f) ln(2x)+ln(3x)ln(x2)ln(6)\ln(2x) + \ln(3x) - \ln(x^2) - \ln(6)

Using the logarithmic property lna+lnb=ln(ab)\ln a + \ln b = \ln(ab): ln(2x)+ln(3x)=ln(6x2)\ln(2x) + \ln(3x) = \ln(6x^2) ln(6x2)ln(x2)ln(6)=ln(6x2x26)\ln(6x^2) - \ln(x^2) - \ln(6) = \ln\left(\frac{6x^2}{x^2 \cdot 6}\right) =ln(1)=0= \ln(1) = 0

Answer: 00


g) log10(10x10)\log_{10}(10x^{10})

log10(10x10)=log10(10)+log10(x10)\log_{10}(10x^{10}) = \log_{10}(10) + \log_{10}(x^{10}) =1+10log10(x)= 1 + 10\log_{10}(x)

Answer: 1+10log10(x)1 + 10\log_{10}(x)


h) log3(x24)log3(3(x2))\log_3(x^2 - 4) - \log_3(3(x-2))

Using loga(m)loga(n)=loga(mn)\log_a(m) - \log_a(n) = \log_a\left(\frac{m}{n}\right): log3(x24)log3(3(x2))=log3(x243(x2))\log_3(x^2 - 4) - \log_3(3(x-2)) = \log_3\left(\frac{x^2 - 4}{3(x-2)}\right) x24=(x2)(x+2)x^2 - 4 = (x-2)(x+2) log3((x2)(x+2)3(x2))=log3(x+23)\log_3\left(\frac{(x-2)(x+2)}{3(x-2)}\right) = \log_3\left(\frac{x+2}{3}\right)

Answer: log3(x+23)\log_3\left(\frac{x+2}{3}\right)


Let me know if you'd like detailed explanations for specific steps or further clarifications!

Here are 5 related questions for exploration:

  1. How are logarithmic properties derived from exponential functions?
  2. What are the applications of logarithms in solving real-world problems?
  3. How does the base of a logarithm influence its calculation?
  4. Can you generalize rules for logarithmic differentiation?
  5. What’s the importance of identifying domains for expressions involving logarithms?

Tip: Always double-check if the argument of a logarithm is positive, as logarithms are undefined for non-positive arguments.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential functions
Logarithmic functions
Properties of logarithms
Simplification of mathematical expressions
Domain of functions

Formulas

log_a(mn) = log_a(m) + log_a(n)
log_a(m/n) = log_a(m) - log_a(n)
log_a(m^k) = k * log_a(m)
e^(ln(x)) = x
ln(e^x) = x

Theorems

Logarithmic and Exponential Relationship
Change of Base Formula
Domain of Logarithmic Functions

Suitable Grade Level

Grades 11-12