Math Problem Statement

Simplify both expressions and insert the appropriate symbol (<, >, or =) into the box.

Solution

Let’s solve this step by step, simplifying both expressions and comparing them.


Expression 1:

13+(2)2(7)32×6×3(2)12(3)1\frac{-13 + (-2)^2 - ( - | -7 | )}{3 - 2 \times 6} \times \frac{3(2)^{-1}}{2(-3)^{-1}}

  1. Simplify the numerator of the first fraction:

    • (2)2=4(-2)^2 = 4,
    • 7=7- | -7 | = -7 (the absolute value of 7-7 is 77),
    • So, the numerator becomes: 13+4(7)=13+4+7=2.-13 + 4 - (-7) = -13 + 4 + 7 = -2.
  2. Simplify the denominator of the first fraction:

    • 32×6=312=9.3 - 2 \times 6 = 3 - 12 = -9.

    So, the first fraction is: 29=29.\frac{-2}{-9} = \frac{2}{9}.

  3. Simplify the second fraction:

    • 3(2)1=3×12=32,3(2)^{-1} = 3 \times \frac{1}{2} = \frac{3}{2},
    • 2(3)1=2×13=23.2(-3)^{-1} = 2 \times -\frac{1}{3} = -\frac{2}{3}.
    • So, the second fraction is: 3223=32×32=94=94.\frac{\frac{3}{2}}{-\frac{2}{3}} = \frac{3}{2} \times \frac{3}{-2} = \frac{9}{-4} = -\frac{9}{4}.
  4. Multiply the two fractions: 29×94=1836=12.\frac{2}{9} \times -\frac{9}{4} = \frac{-18}{36} = -\frac{1}{2}.


Expression 2:

(22×32+2)+4[6(2)3]34+2(2)+134\frac{-\left(2^2 \times 3^2 + 2\right) + 4\left[6 - (-2)^3\right]^3}{-4 + 2(-2)} + 1 \frac{3}{4}

  1. Simplify the numerator:

    • 22=4,2^2 = 4, 32=9,3^2 = 9, so 22×32=4×9=36.2^2 \times 3^2 = 4 \times 9 = 36.
    • Add 22: 36+2=38.36 + 2 = 38.
    • (22×32+2)=38.-\left(2^2 \times 3^2 + 2\right) = -38.

    For 4[6(2)3]34\left[6 - (-2)^3\right]^3:

    • (2)3=8,(-2)^3 = -8, so 6(2)3=6(8)=6+8=14.6 - (-2)^3 = 6 - (-8) = 6 + 8 = 14.
    • 143=14×14×14=2744,14^3 = 14 \times 14 \times 14 = 2744, so 4[6(2)3]3=4×2744=10976.4[6 - (-2)^3]^3 = 4 \times 2744 = 10976.

    So, the numerator becomes: 38+10976=10938.-38 + 10976 = 10938.

  2. Simplify the denominator:

    • 4+2(2)=44=8.-4 + 2(-2) = -4 - 4 = -8.

    So, the fraction is: 109388=1367.25.\frac{10938}{-8} = -1367.25.

  3. Add 134=1.751 \frac{3}{4} = 1.75: 1367.25+1.75=1365.5.-1367.25 + 1.75 = -1365.5.


Comparison:

  • Expression 1: 12=0.5.-\frac{1}{2} = -0.5.
  • Expression 2: 1365.5.-1365.5.

Since: 0.5>1365.5,-0.5 > -1365.5, the appropriate symbol is: >.> .


Final Answer:

>\boxed{>}


Would you like me to explain any specific steps or go further into any part of the solution? Here are some related questions to explore:

  1. How do you simplify expressions with absolute values and exponents?
  2. What are the rules for multiplying and dividing fractions?
  3. How do you compute fractional exponents, such as (2)1(2)^{-1}?
  4. Why does the denominator determine the direction of inequality in fractions?
  5. What is the order of operations for nested brackets?

Tip: Always evaluate expressions inside parentheses or brackets first, following the order of operations (PEMDAS).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Fractions
Exponents
Absolute Value
Order of Operations

Formulas

Fraction multiplication and division
Laws of exponents: a^m * a^n = a^(m+n), (a^m)^n = a^(m*n)
Absolute value definition |x| = x if x >= 0, -x if x < 0

Theorems

Order of operations (PEMDAS)
Basic arithmetic properties

Suitable Grade Level

Grades 10-12