Math Problem Statement

Rewrite without parentheses and simplify (y - 2)^2.

Solution

The expression given is (y2)2(y - 2)^2, and we are asked to rewrite it without parentheses and simplify.

This is a binomial square, so we apply the formula for squaring a binomial:

(ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2

In this case, a=ya = y and b=2b = 2. Applying the formula:

(y2)2=y22(2)(y)+22(y - 2)^2 = y^2 - 2(2)(y) + 2^2 =y24y+4= y^2 - 4y + 4

So, the simplified expression is:

y24y+4y^2 - 4y + 4

Would you like any further details or clarifications?

Here are some related questions:

  1. How do you expand (y+3)2(y + 3)^2?
  2. What is the general formula for expanding (a+b)2(a + b)^2?
  3. How would you simplify (y5)2(y - 5)^2?
  4. Can you apply the same technique to expand (y1)2(y - 1)^2?
  5. What is the expanded form of (x4)2(x - 4)^2?

Tip: Always apply the binomial expansion formula when squaring terms like (ab)2(a - b)^2 to avoid mistakes in simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Binomial Expansion

Formulas

(a - b)^2 = a^2 - 2ab + b^2

Theorems

Binomial Theorem

Suitable Grade Level

Grade 8-10