Math Problem Statement
[ \frac{2\sqrt{10}}{\sqrt{7} - \sqrt{5}} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}} = \frac{2\sqrt{10}(\sqrt{7} + \sqrt{5})}{(\sqrt{7})^2 - (\sqrt{5})^2} ] [ = \frac{2\sqrt{70} + 2\sqrt{50}}{7 - 5} = \frac{2\sqrt{70} + 10\sqrt{5}}{2} = \sqrt{70} + 5\sqrt{5} ]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Rationalization
Simplifying Radicals
Conjugate Method
Formulas
-
Theorems
-
Suitable Grade Level
Grades 9-12
Related Recommendation
Simplify the Square Root Expression: \( \frac{\sqrt{10 + 2\sqrt{5}}}{\sqrt{10 - 2\sqrt{5}}} \)
Simplify the Radical Expression: 4 over Square Root of 7 Minus Square Root of 5
Solve \( \frac{10}{\sqrt{5} + \sqrt{2}} \) Step-by-Step with Conjugates
Simplifying \( \frac{3\sqrt{3} + \sqrt{7}}{\sqrt{7} - 2\sqrt{3}} \) Using Conjugates
Rationalizing the Denominator of \( \frac{5\sqrt{7}}{2} \)