Math Problem Statement

Simplify the expression: (-3u^3v^2w)^(-2)(uw^2), and write the answer using only positive exponents.

Solution

We are tasked with simplifying the following expression and writing the answer using only positive exponents:

(3u3v2w)2(uw2)\left( -3u^3 v^2 w \right)^{-2} \cdot \left( u w^2 \right)

Step-by-step simplification:

1. Simplify the first part: (3u3v2w)2\left( -3u^3 v^2 w \right)^{-2}

Using the property of exponents (am)n=amn(a^m)^n = a^{m \cdot n}, we distribute the exponent 2-2 to each factor:

(3)2=1(3)2=19(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{9} (u3)2=u3(2)=u6(u^3)^{-2} = u^{3 \cdot (-2)} = u^{-6} (v2)2=v2(2)=v4(v^2)^{-2} = v^{2 \cdot (-2)} = v^{-4} (w)2=w2(w)^{-2} = w^{-2}

Thus, the first part becomes: 19u6v4w2\frac{1}{9} u^{-6} v^{-4} w^{-2}

2. Combine with the second part: uw2u w^2

Now, multiply this result by uw2u w^2:

19u6v4w2u1w2\frac{1}{9} u^{-6} v^{-4} w^{-2} \cdot u^1 w^2

3. Combine like terms:

For uu: u6u1=u5u^{-6} \cdot u^1 = u^{-5}

For ww: w2w2=w0=1w^{-2} \cdot w^2 = w^0 = 1

So, we are left with: 19u5v4\frac{1}{9} u^{-5} v^{-4}

4. Write using only positive exponents:

To express the answer with positive exponents, we move terms with negative exponents to the denominator:

19u5v4\frac{1}{9 u^5 v^4}

Final answer:

19u5v4\boxed{\frac{1}{9 u^5 v^4}}

Let me know if you would like further clarification or additional details.


Here are 5 related questions for practice:

  1. Simplify (4a2b3)1a2b2\left( 4a^2b^{-3} \right)^{-1} \cdot a^{-2}b^2.
  2. Simplify (2x3y2)3x1y4\left( -2x^3y^2 \right)^{-3} \cdot x^{-1}y^{-4}.
  3. How would you simplify (5x2y1)2\left(5x^2y^{-1}\right)^{-2}?
  4. Combine and simplify (2a2b)3(ab2)\left(2a^{-2}b\right)^3 \cdot \left(a b^{-2}\right).
  5. Simplify (7p3q4r)2(p2r3)\left( 7p^3q^4r \right)^{-2} \cdot \left( p^2 r^{-3} \right).

Tip: Always remember to apply the exponent to every term inside the parentheses when simplifying expressions like (xyz)n(xyz)^n.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponents
Multiplication of Exponential Expressions

Formulas

(a^m)^n = a^{m*n}
a^{-m} = 1/a^m

Theorems

Laws of Exponents

Suitable Grade Level

Grades 9-12