Math Problem Statement

Simplify the algebraic expression given in the image.

Solution

Let's analyze and simplify the given expression step-by-step.

Expression:

(31xy3)2(23x2y1)3(23x3y)2(x1y3)3\frac{(-3^{-1}x y^3)^{-2} \cdot (2^{-3}x^2y^{-1})^3}{(2^3x^{-3}y)^{-2} \cdot (x^{-1}y^3)^3}

Step 1: Simplify each term using the exponent rules

We use the following exponent rules:

  • (am)n=amn(a^m)^n = a^{m \cdot n}
  • (ab)n=anbn(ab)^n = a^n \cdot b^n
  • an=1ana^{-n} = \frac{1}{a^n}

Numerator:

  1. First term: (31xy3)2(-3^{-1}xy^3)^{-2} (31xy3)2=(1)2(31)2(x2)(y3)2(-3^{-1}xy^3)^{-2} = (-1)^{-2} \cdot (3^{-1})^{-2} \cdot (x^{-2}) \cdot (y^{3})^{-2} =132x2y6=9x2y6.= 1 \cdot 3^2 \cdot x^{-2} \cdot y^{-6} = 9x^{-2}y^{-6}.

  2. Second term: (23x2y1)3(2^{-3}x^2y^{-1})^3 (23x2y1)3=(23)3(x2)3(y1)3(2^{-3}x^2y^{-1})^3 = (2^{-3})^3 \cdot (x^2)^3 \cdot (y^{-1})^3 =29x6y3.= 2^{-9} \cdot x^6 \cdot y^{-3}.

Denominator:

  1. First term: (23x3y)2(2^3x^{-3}y)^{-2} (23x3y)2=(23)2(x3)2(y)2(2^3x^{-3}y)^{-2} = (2^3)^{-2} \cdot (x^{-3})^{-2} \cdot (y)^{-2} =26x6y2.= 2^{-6} \cdot x^6 \cdot y^{-2}.

  2. Second term: (x1y3)3(x^{-1}y^3)^3 (x1y3)3=(x1)3(y3)3(x^{-1}y^3)^3 = (x^{-1})^3 \cdot (y^3)^3 =x3y9.= x^{-3} \cdot y^9.

Step 2: Combine the terms

Numerator:

9x2y629x6y3=929x2+6y639x^{-2}y^{-6} \cdot 2^{-9}x^6y^{-3} = 9 \cdot 2^{-9} \cdot x^{-2+6} \cdot y^{-6-3} =929x4y9.= 9 \cdot 2^{-9} \cdot x^4 \cdot y^{-9}.

Denominator:

26x6y2x3y9=26x63y2+92^{-6}x^6y^{-2} \cdot x^{-3}y^9 = 2^{-6} \cdot x^{6-3} \cdot y^{-2+9} =26x3y7.= 2^{-6} \cdot x^3 \cdot y^7.

Step 3: Simplify the fraction

929x4y926x3y7=92926x43y97\frac{9 \cdot 2^{-9} \cdot x^4 \cdot y^{-9}}{2^{-6} \cdot x^3 \cdot y^7} = 9 \cdot \frac{2^{-9}}{2^{-6}} \cdot x^{4-3} \cdot y^{-9-7} =929+6x1y16.= 9 \cdot 2^{-9+6} \cdot x^{1} \cdot y^{-16}. =923xy16.= 9 \cdot 2^{-3} \cdot x \cdot y^{-16}.

Step 4: Write the final simplified result

9x8y16.\frac{9x}{8y^{16}}.

Let me know if you'd like a further breakdown or have any questions! Here are 5 related questions:

  1. What are the rules for simplifying exponents with negative bases?
  2. How do you handle fractional exponents in such problems?
  3. What happens when terms with the same base but different exponents are multiplied?
  4. Can you explain why an=1ana^{-n} = \frac{1}{a^n}?
  5. How can such expressions be applied to practical physics problems?

Tip: When simplifying expressions, work term by term and apply exponent rules systematically.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponent Rules
Simplifying Expressions
Negative Exponents

Formulas

(a^m)^n = a^(m*n)
(ab)^n = a^n * b^n
a^(-n) = 1 / a^n

Theorems

Laws of Exponents

Suitable Grade Level

Grades 10-12