Math Problem Statement

Perform the indicated operations and simplify the following expression. StartFraction y squared minus 2 y Over y squared plus y minus 2 EndFraction times StartFraction y minus 1 Over y squared plus 4 y plus 4 EndFraction divided by StartFraction y squared plus 5 y minus 14 Over y Superscript 4 EndFraction y2−2y y2+y−2• y−1 y2+4y+4÷ y2+5y−14 y4 Question content area bottom Part 1 StartFraction y squared minus 2 y Over y squared plus y minus 2 EndFraction times StartFraction y minus 1 Over y squared plus 4 y plus 4 EndFraction divided by StartFraction y squared plus 5 y minus 14 Over y Superscript 4 EndFraction y2−2y y2+y−2• y−1 y2+4y+4÷ y2+5y−14 y4equals=enter your response here ​(Simplify your answer. Type your answer in factored​ form.)

Solution

To simplify the expression:

(y22yy2+y2)×(y1y2+4y+4)÷(y2+5y14y4)\left( \frac{y^2 - 2y}{y^2 + y - 2} \right) \times \left( \frac{y - 1}{y^2 + 4y + 4} \right) \div \left( \frac{y^2 + 5y - 14}{y^4} \right)

We can break this down step-by-step.

Step 1: Factor all the quadratic expressions

Let's factor the quadratic expressions where possible:

  1. y22y=y(y2)y^2 - 2y = y(y - 2)
  2. y2+y2y^2 + y - 2 can be factored as (y1)(y+2)(y - 1)(y + 2)
  3. y2+4y+4y^2 + 4y + 4 is a perfect square, so it factors as (y+2)2(y + 2)^2
  4. y2+5y14y^2 + 5y - 14 factors as (y2)(y+7)(y - 2)(y + 7)

Now, substitute the factored forms back into the expression:

(y(y2)(y1)(y+2))×(y1(y+2)2)÷((y2)(y+7)y4)\left( \frac{y(y - 2)}{(y - 1)(y + 2)} \right) \times \left( \frac{y - 1}{(y + 2)^2} \right) \div \left( \frac{(y - 2)(y + 7)}{y^4} \right)

Step 2: Simplify the multiplication

When multiplying fractions, we multiply the numerators together and the denominators together:

y(y2)(y1)(y1)(y+2)(y+2)2\frac{y(y - 2)(y - 1)}{(y - 1)(y + 2)(y + 2)^2}

Notice that (y1)(y - 1) cancels out:

y(y2)(y+2)(y+2)2\frac{y(y - 2)}{(y + 2)(y + 2)^2}

This simplifies to:

y(y2)(y+2)3\frac{y(y - 2)}{(y + 2)^3}

Step 3: Perform the division

Now we need to divide by (y2)(y+7)y4\frac{(y - 2)(y + 7)}{y^4}. Dividing by a fraction is the same as multiplying by its reciprocal, so we multiply by y4(y2)(y+7)\frac{y^4}{(y - 2)(y + 7)}:

y(y2)(y+2)3×y4(y2)(y+7)\frac{y(y - 2)}{(y + 2)^3} \times \frac{y^4}{(y - 2)(y + 7)}

Cancel the common (y2)(y - 2) terms:

yy4(y+2)3(y+7)\frac{y \cdot y^4}{(y + 2)^3(y + 7)}

Step 4: Final simplified expression

Now, multiply the numerators and combine the terms:

y5(y+2)3(y+7)\frac{y^5}{(y + 2)^3(y + 7)}

This is the simplified expression.

Final Answer:

y5(y+2)3(y+7)\frac{y^5}{(y + 2)^3(y + 7)}

Would you like more details on any part of this solution?


Here are some related questions for further practice:

  1. Factor the expression y2+6y+9y^2 + 6y + 9.
  2. Simplify (x24)(x+2)×(x+2)(x21)\frac{(x^2 - 4)}{(x + 2)} \times \frac{(x + 2)}{(x^2 - 1)}.
  3. Solve y2+y6y21\frac{y^2 + y - 6}{y^2 - 1}.
  4. Factor and simplify y2+7y+12y29\frac{y^2 + 7y + 12}{y^2 - 9}.
  5. Simplify the expression (x29)(x21)÷(x+3)(x1)\frac{(x^2 - 9)}{(x^2 - 1)} \div \frac{(x + 3)}{(x - 1)}.

Tip: Always check for common factors to cancel before multiplying or dividing algebraic fractions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rational Expressions
Factoring Quadratics
Simplification

Formulas

Factoring a quadratic expression: ax^2 + bx + c = (px + q)(rx + s)
Multiplication and division of rational expressions: (a/b) * (c/d) = (a * c) / (b * d)
Cancelling common factors in fractions

Theorems

Fundamental Theorem of Algebra
Properties of Exponents

Suitable Grade Level

Grades 9-12