Math Problem Statement

Упростить выражение

Упростить выражение: 2 1/6 * (1 1/3 x - 1 5/6) + 2 3/4 * (1 1/5 x - 2 5/6) - 917x/90 + 631/72

Solution

Let's simplify the given mathematical expression step by step. Here is the expression:

216(113x156)+234(115x256)917x90+631722\frac{1}{6} \cdot \left( 1\frac{1}{3}x - 1\frac{5}{6} \right) + 2\frac{3}{4} \cdot \left( 1\frac{1}{5}x - 2\frac{5}{6} \right) - \frac{917x}{90} + \frac{631}{72}

Step 1: Convert mixed fractions to improper fractions.

  • 216=1362\frac{1}{6} = \frac{13}{6}
  • 113=431\frac{1}{3} = \frac{4}{3}
  • 156=1161\frac{5}{6} = \frac{11}{6}
  • 234=1142\frac{3}{4} = \frac{11}{4}
  • 115=651\frac{1}{5} = \frac{6}{5}
  • 256=1762\frac{5}{6} = \frac{17}{6}

Now the expression becomes:

136(43x116)+114(65x176)917x90+63172\frac{13}{6} \cdot \left( \frac{4}{3}x - \frac{11}{6} \right) + \frac{11}{4} \cdot \left( \frac{6}{5}x - \frac{17}{6} \right) - \frac{917x}{90} + \frac{631}{72}

Step 2: Expand the brackets.

  • Expand 136(43x116)\frac{13}{6} \cdot \left( \frac{4}{3}x - \frac{11}{6} \right): 13643x=5218x=269x,136116=14336\frac{13}{6} \cdot \frac{4}{3}x = \frac{52}{18}x = \frac{26}{9}x, \quad \frac{13}{6} \cdot \frac{11}{6} = \frac{143}{36} So, 136(43x116)=269x14336\frac{13}{6} \cdot \left( \frac{4}{3}x - \frac{11}{6} \right) = \frac{26}{9}x - \frac{143}{36}.

  • Expand 114(65x176)\frac{11}{4} \cdot \left( \frac{6}{5}x - \frac{17}{6} \right): 11465x=6620x=3310x,114176=18724\frac{11}{4} \cdot \frac{6}{5}x = \frac{66}{20}x = \frac{33}{10}x, \quad \frac{11}{4} \cdot \frac{17}{6} = \frac{187}{24} So, 114(65x176)=3310x18724\frac{11}{4} \cdot \left( \frac{6}{5}x - \frac{17}{6} \right) = \frac{33}{10}x - \frac{187}{24}.

Now the expression becomes: (269x14336)+(3310x18724)917x90+63172\left( \frac{26}{9}x - \frac{143}{36} \right) + \left( \frac{33}{10}x - \frac{187}{24} \right) - \frac{917x}{90} + \frac{631}{72}

Step 3: Combine xx-terms.

  • Write all xx-terms with a common denominator: 269x=26090x,3310x=29790x,917x90=91790x\frac{26}{9}x = \frac{260}{90}x, \quad \frac{33}{10}x = \frac{297}{90}x, \quad -\frac{917x}{90} = -\frac{917}{90}x Combine: 26090x+29790x91790x=260+29791790x=36090x=4x\frac{260}{90}x + \frac{297}{90}x - \frac{917}{90}x = \frac{260 + 297 - 917}{90}x = \frac{-360}{90}x = -4x

Step 4: Combine constant terms.

  • Write all constant terms with a common denominator: 14336,18724,63172-\frac{143}{36}, \quad -\frac{187}{24}, \quad \frac{631}{72} Find a common denominator (72): 14336=28672,18724=56172,63172=63172-\frac{143}{36} = -\frac{286}{72}, \quad -\frac{187}{24} = -\frac{561}{72}, \quad \frac{631}{72} = \frac{631}{72} Combine: 2867256172+63172=286561+63172=21672=3-\frac{286}{72} - \frac{561}{72} + \frac{631}{72} = \frac{-286 - 561 + 631}{72} = \frac{-216}{72} = -3

Final Expression:

4x3-4x - 3

Let me know if you need further clarification or detailed steps for any part! Here are five related questions:

  1. How do you find the least common denominator when combining fractions?
  2. Why is it important to convert mixed fractions into improper fractions during simplification?
  3. Can you explain how to distribute coefficients in expressions with parentheses?
  4. What are common mistakes to watch for when simplifying terms involving fractions?
  5. How do you check if the final simplified expression is correct?

Tip: Always double-check your common denominators to ensure accurate simplifications of fractions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Fractions
Simplification of Expressions
Combining Like Terms

Formulas

Conversion of mixed fractions to improper fractions
Distribution of multiplication over addition or subtraction
Finding the least common denominator to combine fractions

Theorems

-

Suitable Grade Level

Grades 8-10