Math Problem Statement
Solution
The image contains the following problem related to set theory:
We are given the formula for the union of two sets:
First Problem:
Given:
We need to find .
Using the formula: Simplifying:
Second Problem:
Given:
- We need to find .
Using the same formula:
Thus, the missing number is .
Would you like any further details on this? Here are some related questions to expand on:
- What happens when and are disjoint sets?
- How can we visualize this with Venn diagrams?
- What is the general formula for the union of three sets?
- How can we apply this formula to probability problems?
- How does this relate to the inclusion-exclusion principle?
Tip: When solving set problems, drawing Venn diagrams can help in visualizing intersections and unions effectively!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Set Theory
Union and Intersection of Sets
Basic Algebra
Formulas
n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
Theorems
Inclusion-Exclusion Principle
Suitable Grade Level
Grades 8-10
Related Recommendation
How to Calculate the Union of Two Sets Using the Formula n(A ∪ B) = n(A) + n(B) - n(A ∩ B)
Calculate the Union of Sets A and B: n(A ∪ B)
Union Rule Problem: Find n(A ∪ B) with Given n(A), n(B), and n(A ∩ B)
Find the Union and Cardinality of Sets A and B
Understanding the Union Formula n(A ∪ B) = n(A) + n(B) - n(A ∩ B) with Diagram