Math Problem Statement

1. If A = {1, 2, 3} and B = {1, 4}, find the number of subsets of A×B. 2. If (a/8 + 1, y - 2|3) = (-2/3, 1 | 2|3), find a and y. 3. Simplify cos(a + y) + cos(a - y). 4. Solve for p: p cos(3π/4 + x) + cos(3π/4 - x) = -√2 cos(x). 5. Solve the inequality: (n+2)/2 + n/3 ≤ 10 + n/6, and represent the solution on a number line. 6(i). nCr = ? 6(ii). In how many ways can a committee of 3 men and 2 women be chosen from 7 men and 5 women?

Solution

Here are solutions for the given problems:


1. Find the number of subsets of A×BA \times B:

Given: A={1,2,3},B={1,4}A = \{1, 2, 3\}, \quad B = \{1, 4\} The Cartesian product A×BA \times B contains 3×2=63 \times 2 = 6 elements: A×B={(1,1),(1,4),(2,1),(2,4),(3,1),(3,4)}.A \times B = \{(1,1), (1,4), (2,1), (2,4), (3,1), (3,4)\}. The number of subsets of a set is 2n2^n, where nn is the number of elements in the set. Hence: Number of subsets of A×B=26=64.\text{Number of subsets of } A \times B = 2^6 = 64.


2. Solve for aa and yy:

Given: (a8+1,y23)=(23,123)\left( \frac{a}{8} + 1, y - 2|3 \right) = \left( -\frac{2}{3}, 1 | 2|3 \right)

  • Equating the first components: a8+1=23\frac{a}{8} + 1 = -\frac{2}{3} Solve for aa: a8=231=53a=53×8=403.\frac{a}{8} = -\frac{2}{3} - 1 = -\frac{5}{3} \quad \Rightarrow \quad a = -\frac{5}{3} \times 8 = -\frac{40}{3}.

  • Equating the second components: y23=123.y - 2|3 = 1|2|3. Matching the structure of the expression, y=1y = 1.


3. Simplify cos(a+y)+cos(ay)\cos(a + y) + \cos(a - y):

Using the identity: cos(a+y)+cos(ay)=2cos(a)cos(y).\cos(a + y) + \cos(a - y) = 2 \cos(a) \cos(y). Thus: cos(a+y)+cos(ay)=2cos(a)cos(y).\cos(a + y) + \cos(a - y) = 2 \cos(a) \cos(y).


4. Solve for pp:

Given: pcos(3π4+x)+cos(3π4x)=2cos(x).p \cos\left(\frac{3\pi}{4} + x\right) + \cos\left(\frac{3\pi}{4} - x\right) = -\sqrt{2} \cos(x). Using trigonometric transformations: cos(3π4+x)=22cos(x)22sin(x),\cos\left(\frac{3\pi}{4} + x\right) = -\frac{\sqrt{2}}{2} \cos(x) - \frac{\sqrt{2}}{2} \sin(x), cos(3π4x)=22cos(x)+22sin(x).\cos\left(\frac{3\pi}{4} - x\right) = -\frac{\sqrt{2}}{2} \cos(x) + \frac{\sqrt{2}}{2} \sin(x). Add both: p(22cos(x)22sin(x))+(22cos(x)+22sin(x))=2cos(x).p \left(-\frac{\sqrt{2}}{2} \cos(x) - \frac{\sqrt{2}}{2} \sin(x)\right) + \left(-\frac{\sqrt{2}}{2} \cos(x) + \frac{\sqrt{2}}{2} \sin(x)\right) = -\sqrt{2} \cos(x). Simplify for pp.


5. Solve the inequality:

Given: n+22+n310+n6.\frac{n + 2}{2} + \frac{n}{3} \leq 10 + \frac{n}{6}. Combine all terms: 3(n+2)6+2n610+n6.\frac{3(n + 2)}{6} + \frac{2n}{6} \leq 10 + \frac{n}{6}. 3n+6+2n610+n6.\frac{3n + 6 + 2n}{6} \leq 10 + \frac{n}{6}. 5n+6610+n6.\frac{5n + 6}{6} \leq 10 + \frac{n}{6}. Multiply through by 6: 5n+660+n.5n + 6 \leq 60 + n. Simplify: 5nn606.5n - n \leq 60 - 6. 4n54n544=13.5.4n \leq 54 \quad \Rightarrow \quad n \leq \frac{54}{4} = 13.5. Solution: n(,13.5].n \in (-\infty, 13.5].


6. Combinatorics:

(i) nCr=n!r!(nr)!nCr = \frac{n!}{r!(n-r)!}.

(ii) A committee of 3 men and 2 women chosen from 7 men and 5 women: (73)×(52)=7!3!(73)!×5!2!(52)!.\binom{7}{3} \times \binom{5}{2} = \frac{7!}{3!(7-3)!} \times \frac{5!}{2!(5-2)!}. Simplify: (73)=765321=35,(52)=5421=10.\binom{7}{3} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = 35, \quad \binom{5}{2} = \frac{5 \cdot 4}{2 \cdot 1} = 10. Total: 35×10=350.35 \times 10 = 350.


Would you like detailed solutions for any of the steps above?

Follow-up questions:

  1. Can you calculate Cartesian products for larger sets?
  2. How can trigonometric identities simplify complex expressions?
  3. Why is nCrnCr critical in combinatorics?
  4. How does solving inequalities differ when fractions are involved?
  5. Can the solution of inequalities be represented on graphs?

Tip:

Use symmetry in trigonometric functions like cosine to simplify equations efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set theory
Cartesian products
Trigonometric identities
Inequalities
Combinatorics

Formulas

Number of subsets: 2^n
Trigonometric sum identities: cos(a + b) + cos(a - b) = 2cos(a)cos(b)
Binomial coefficient formula: nCr = n! / [r!(n-r)!]
Simplification of fractions in inequalities

Theorems

Basic set theory principles
Trigonometric addition formulas
Properties of inequalities
Combinatorial counting principles

Suitable Grade Level

Grades 11-12