Math Problem Statement

determine if thesum of n^n/n! from 1 to inf con or diverges

Solution

To determine whether the series

n=1nnn!\sum_{n=1}^\infty \frac{n^n}{n!}

converges or diverges, we analyze its behavior.


Step 1: Apply the Ratio Test

The Ratio Test states that for a series an\sum a_n, consider the limit: L=limnan+1an.L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.

  • If L<1L < 1, the series converges absolutely.
  • If L>1L > 1, the series diverges.
  • If L=1L = 1, the test is inconclusive.

Here, an=nnn!a_n = \frac{n^n}{n!}. Compute an+1an\frac{a_{n+1}}{a_n}: an+1an=(n+1)n+1(n+1)!nnn!=(n+1)n+1n!nn(n+1)!.\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \frac{(n+1)^{n+1} n!}{n^n (n+1)!}.

Simplify: an+1an=(n+1)n+1(n+1)nn.\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{(n+1) n^n}.

Break it into parts: an+1an=(n+1)n+1nn(n+1)=(n+1)n(n+1)nn(n+1)=(n+1n)n.\frac{a_{n+1}}{a_n} = \frac{(n+1)^{n+1}}{n^n (n+1)} = \frac{(n+1)^n (n+1)}{n^n (n+1)} = \left(\frac{n+1}{n}\right)^n.


Step 2: Analyze (n+1n)n\left(\frac{n+1}{n}\right)^n

Simplify n+1n=1+1n\frac{n+1}{n} = 1 + \frac{1}{n}. As nn \to \infty, this becomes: (1+1n)ne,\left(1 + \frac{1}{n}\right)^n \to e, where ee is the base of the natural logarithm.

Thus: limnan+1an=e.\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = e.


Step 3: Apply the Ratio Test Result

Since the limit L=e>1L = e > 1, the series diverges.


Final Answer:

n=1nnn!diverges.\sum_{n=1}^\infty \frac{n^n}{n!} \quad \text{diverges}.

Would you like a detailed explanation of any step or related examples?


Practice Questions:

  1. Determine if n=1n!nn\sum_{n=1}^\infty \frac{n!}{n^n} converges or diverges.
  2. Analyze the series (\sum_{n=1}^\infty \frac{n

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series and Sequences
Convergence and Divergence
Ratio Test

Formulas

L = lim(n -> ∞) |a(n+1)/a(n)|
a(n) = n^n / n!
(1 + 1/n)^n -> e as n -> ∞

Theorems

Ratio Test

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grades 11-12)