Math Problem Statement

for the numerator: ln ⁑ ( 1 + 4 π‘₯ ) β‰ˆ 4 π‘₯ βˆ’ ( 4 π‘₯ ) 2 2 + 𝑂 ( π‘₯ 3 )

4 π‘₯ βˆ’ 8 π‘₯ 2 + 𝑂 ( π‘₯ 3 ) ln(1+4x)β‰ˆ4xβˆ’ 2 (4x) 2

+O(x 3 )=4xβˆ’8x 2 +O(x 3 ) 𝑒 2 π‘₯ βˆ’ 1 β‰ˆ 2 π‘₯ + ( 2 π‘₯ ) 2 2 + 𝑂 ( π‘₯ 3 )

2 π‘₯ + 2 π‘₯ 2 + 𝑂 ( π‘₯ 3 ) e 2x βˆ’1β‰ˆ2x+ 2 (2x) 2

+O(x 3 )=2x+2x 2 +O(x 3 ) ( 1 + 2 π‘₯ ) 3 βˆ’ 1

1 + 6 π‘₯ + 12 π‘₯ 2 + 8 π‘₯ 3 βˆ’ 1

6 π‘₯ + 12 π‘₯ 2 + 8 π‘₯ 3 (1+2x) 3 βˆ’1=1+6x+12x 2 +8x 3 βˆ’1=6x+12x 2 +8x 3

Solution

Let's break down and verify the series expansions provided:

  1. For ln⁑(1+4x)\ln(1 + 4x): ln⁑(1+4x)β‰ˆ4xβˆ’(4x)22+O(x3)=4xβˆ’8x2+O(x3)\ln(1 + 4x) \approx 4x - \frac{(4x)^2}{2} + O(x^3) = 4x - 8x^2 + O(x^3) This expansion is derived using the Taylor series expansion for ln⁑(1+u)\ln(1 + u), where u=4xu = 4x: ln⁑(1+u)=uβˆ’u22+u33βˆ’β‹―\ln(1 + u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \cdots Substituting u=4xu = 4x: ln⁑(1+4x)=4xβˆ’(4x)22+O(x3)=4xβˆ’8x2+O(x3)\ln(1 + 4x) = 4x - \frac{(4x)^2}{2} + O(x^3) = 4x - 8x^2 + O(x^3)

  2. For e2xβˆ’1e^{2x} - 1: e2xβˆ’1β‰ˆ2x+(2x)22+O(x3)=2x+2x2+O(x3)e^{2x} - 1 \approx 2x + \frac{(2x)^2}{2} + O(x^3) = 2x + 2x^2 + O(x^3) This expansion is derived using the Taylor series expansion for eue^u, where u=2xu = 2x: eu=1+u+u22!+u33!+β‹―e^u = 1 + u + \frac{u^2}{2!} + \frac{u^3}{3!} + \cdots Substituting u=2xu = 2x: e2x=1+2x+(2x)22!+O(x3)=1+2x+2x2+O(x3)e^{2x} = 1 + 2x + \frac{(2x)^2}{2!} + O(x^3) = 1 + 2x + 2x^2 + O(x^3) Subtracting 1 from both sides: e2xβˆ’1=2x+2x2+O(x3)e^{2x} - 1 = 2x + 2x^2 + O(x^3)

  3. For (1+2x)3βˆ’1(1 + 2x)^3 - 1: (1+2x)3βˆ’1=1+6x+12x2+8x3βˆ’1=6x+12x2+8x3(1 + 2x)^3 - 1 = 1 + 6x + 12x^2 + 8x^3 - 1 = 6x + 12x^2 + 8x^3 This expansion is derived using the binomial theorem for (1+u)n(1 + u)^n, where u=2xu = 2x and n=3n = 3: (1+u)n=1+(n1)u+(n2)u2+(n3)u3+β‹―(1 + u)^n = 1 + \binom{n}{1}u + \binom{n}{2}u^2 + \binom{n}{3}u^3 + \cdots Substituting u=2xu = 2x and n=3n = 3: (1+2x)3=1+3β‹…2x+3β‹…(2x)2+(2x)3=1+6x+12x2+8x3(1 + 2x)^3 = 1 + 3 \cdot 2x + 3 \cdot (2x)^2 + (2x)^3 = 1 + 6x + 12x^2 + 8x^3 Subtracting 1 from both sides: [ (1 + 2x)^3 - 1 = 6x + 12x^2 + 8x^3

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Taylor Series
Series Approximation
Binomial Theorem

Formulas

Taylor series expansion
Binomial theorem

Theorems

Binomial theorem

Suitable Grade Level

College