Math Problem Statement

Separate the real and imaginary parts of the following: (i) \( \left(\frac{3 - 2i}{2 - 3i}\right)^{-2} \) (ii) \( Z = i - 4zi - 3 \) (iii) \( \frac{3z + i}{2 + 4} \) where \( z = 3 + 2i \)

Solution

Let's solve each part by separating the real and imaginary parts.

Problem Analysis

The task is to separate the real and imaginary components of complex expressions given in three parts:

  1. (32i23i)2\left(\frac{3 - 2i}{2 - 3i}\right)^{-2}
  2. Z=i4zi3Z = i - 4zi - 3
  3. 3z+i2+4\frac{3z + i}{2 + 4} and z=3+2iz = 3 + 2i

I'll go through each part in detail.

Solution

Part (i) (32i23i)2\left(\frac{3 - 2i}{2 - 3i}\right)^{-2}

  1. First, simplify 32i23i\frac{3 - 2i}{2 - 3i}:

    • Multiply numerator and denominator by the conjugate of the denominator: 2+3i2 + 3i.
    • This gives: (32i)(2+3i)(23i)(2+3i)=6+9i4i6i24+9=6+5i+613=12+5i13\frac{(3 - 2i)(2 + 3i)}{(2 - 3i)(2 + 3i)} = \frac{6 + 9i - 4i - 6i^2}{4 + 9} = \frac{6 + 5i + 6}{13} = \frac{12 + 5i}{13}
    • So, 32i23i=1213+513i\frac{3 - 2i}{2 - 3i} = \frac{12}{13} + \frac{5}{13}i.
  2. Now, raise this result to the power of -2.

Part (ii) Z=i4zi3Z = i - 4zi - 3

Separate the real and imaginary parts directly by rearranging terms.

Part (iii) 3z+i2+4\frac{3z + i}{2 + 4} where z=3+2iz = 3 + 2i

  1. Substitute z=3+2iz = 3 + 2i into 3z+i3z + i:
    • Compute

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Real and Imaginary Parts
Conjugate Multiplication
Exponentiation

Formulas

\( \text{Real and imaginary parts of } a + bi \text{ are } a \text{ and } b \text{, respectively} \)
\( \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{c^2 + d^2} \)
Raising a complex number to a power \( z^n \)

Theorems

-

Suitable Grade Level

Grade 10-12