Math Problem Statement

(2 points) Consider the parametric curve defined by the image of r⃗ (t)=⟨−6t2,t3−5t⟩ .

(c) Find d2y/dx2 when t=2.5 .

d2ydx2∣∣∣t=2.5=

Solution

To find d2ydx2\frac{d^2y}{dx^2} for the parametric curve defined by the vector function r(t)=6t2,t35t\mathbf{r}(t) = \langle -6t^2, t^3 - 5t \rangle at t=2.5t = 2.5, we proceed as follows:

Step 1: Find dydx\frac{dy}{dx}

From parametric equations, the slope of the curve is given by:

dydx=dydtdxdt\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}

The components of r(t)\mathbf{r}(t) are:

  • x(t)=6t2x(t) = -6t^2
  • y(t)=t35ty(t) = t^3 - 5t

Now, compute the derivatives:

  • dxdt=ddt(6t2)=12t\frac{dx}{dt} = \frac{d}{dt}(-6t^2) = -12t
  • dydt=ddt(t35t)=3t25\frac{dy}{dt} = \frac{d}{dt}(t^3 - 5t) = 3t^2 - 5

So, we have:

dydx=3t2512t\frac{dy}{dx} = \frac{3t^2 - 5}{-12t}

Step 2: Find d2ydx2\frac{d^2y}{dx^2}

Next, we compute d2ydx2\frac{d^2y}{dx^2}, which is the derivative of dydx\frac{dy}{dx} with respect to xx. Using the chain rule, we get:

d2ydx2=ddx(dydx)=ddt(dydx)dxdt\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{\frac{d}{dt} \left( \frac{dy}{dx} \right)}{\frac{dx}{dt}}

First, find ddt(dydx)\frac{d}{dt} \left( \frac{dy}{dx} \right): ddt(dydx)=ddt(3t2512t)\frac{d}{dt} \left( \frac{dy}{dx} \right) = \frac{d}{dt} \left( \frac{3t^2 - 5}{-12t} \right)

We apply the quotient rule to differentiate: ddt(3t2512t)=(12t)(6t)(12)(3t25)(12t)2\frac{d}{dt} \left( \frac{3t^2 - 5}{-12t} \right) = \frac{(-12t)(6t) - (-12)(3t^2 - 5)}{(-12t)^2}

Simplifying the numerator: (12t)(6t)=72t2,(12)(3t25)=36t2+60(-12t)(6t) = -72t^2, \quad (-12)(3t^2 - 5) = -36t^2 + 60

So the numerator becomes: 72t2(36t2+60)=72t2+36t260=36t260-72t^2 - (-36t^2 + 60) = -72t^2 + 36t^2 - 60 = -36t^2 - 60

Thus, we have: ddt(dydx)=36t260144t2\frac{d}{dt} \left( \frac{dy}{dx} \right) = \frac{-36t^2 - 60}{144t^2}

Simplifying: ddt(dydx)=36(t2+5/3)144t2=t25/34t2\frac{d}{dt} \left( \frac{dy}{dx} \right) = \frac{-36(t^2 + 5/3)}{144t^2} = \frac{-t^2 - 5/3}{4t^2}

Step 3: Evaluate at t=2.5t = 2.5

Now, we substitute t=2.5t = 2.5 into the expression:

  1. dxdt\frac{dx}{dt} at t=2.5t = 2.5: dxdt=12(2.5)=30\frac{dx}{dt} = -12(2.5) = -30

  2. ddt(dydx)\frac{d}{dt} \left( \frac{dy}{dx} \right) at t=2.5t = 2.5: ddt(dydx)=(2.5)25/34(2.5)2=6.255/34(6.25)\frac{d}{dt} \left( \frac{dy}{dx} \right) = \frac{-(2.5)^2 - 5/3}{4(2.5)^2} = \frac{-6.25 - 5/3}{4(6.25)} Simplifying further: =6.251.666725=7.9167250.3167= \frac{-6.25 - 1.6667}{25} = \frac{-7.9167}{25} \approx -0.3167

Finally, we compute d2ydx2\frac{d^2y}{dx^2}: d2ydx2=0.3167300.01056\frac{d^2y}{dx^2} = \frac{-0.3167}{-30} \approx 0.01056

Thus, the second derivative d2ydx2\frac{d^2y}{dx^2} at t=2.5t = 2.5 is approximately:

0.0106\boxed{0.0106}

Let me know if you want details on any steps!


Related Questions:

  1. How would you compute dydx\frac{dy}{dx} for a general parametric curve?
  2. What is the geometric interpretation of d2ydx2\frac{d^2y}{dx^2} on a curve?
  3. Can d2ydx2\frac{d^2y}{dx^2} be negative? What does it represent in that case?
  4. How does the chain rule apply to parametric curves in higher dimensions?
  5. Can this method be extended to curves in three dimensions?

Tip:

When dealing with parametric curves, always start by computing the first derivatives dxdt\frac{dx}{dt} and dydt\frac{dy}{dt} to ensure you have the proper components for further calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Parametric Equations
Derivatives

Formulas

dy/dx = (dy/dt) / (dx/dt)
d²y/dx² = (d/dt(dy/dx)) / (dx/dt)

Theorems

Quotient Rule
Chain Rule

Suitable Grade Level

Grades 11-12