Math Problem Statement

when P is equals to 11 Q equals to 13 e equals to 11 and M is equals to 7 derive the encryption and decryption using RSA algorithm

Solution

The RSA algorithm involves key generation, encryption, and decryption. Given the values:

  • P=11P = 11
  • Q=13Q = 13
  • e=11e = 11
  • M=7M = 7 (the plaintext message)

We will go through each step of the RSA process: key generation, encryption, and decryption.

1. Key Generation:

Step 1: Calculate NN

N=P×Q=11×13=143N = P \times Q = 11 \times 13 = 143

Step 2: Calculate ϕ(N)\phi(N) (Euler's Totient Function)

ϕ(N)=(P1)×(Q1)=(111)×(131)=10×12=120\phi(N) = (P - 1) \times (Q - 1) = (11 - 1) \times (13 - 1) = 10 \times 12 = 120

Step 3: Public Key (N,e)(N, e)

We are given e=11e = 11. Ensure that ee is coprime to ϕ(N)\phi(N), i.e., gcd(11,120)=1\gcd(11, 120) = 1. Since e=11e = 11 is coprime with 120120, we can proceed.

  • The public key is (N=143,e=11)(N = 143, e = 11).

Step 4: Calculate the Private Key dd

We need to find dd, the modular inverse of ee modulo ϕ(N)\phi(N). This means solving for dd in the equation:

d×e1(modϕ(N))d \times e \equiv 1 \, (\text{mod} \, \phi(N))

This can be solved using the Extended Euclidean Algorithm to find dd such that:

11d1(mod120)11d \equiv 1 \, (\text{mod} \, 120)

Using the Extended Euclidean Algorithm:

  • 120=10×11+10120 = 10 \times 11 + 10
  • 11=1×10+111 = 1 \times 10 + 1
  • 10=10×1+010 = 10 \times 1 + 0

Reversing the steps:

  • 1=111×101 = 11 - 1 \times 10
  • 1=111×(12010×11)1 = 11 - 1 \times (120 - 10 \times 11)
  • 1=11×111×1201 = 11 \times 11 - 1 \times 120

Thus, d=11d = 11.

  • The private key is (N=143,d=11)(N = 143, d = 11).

2. Encryption:

The encryption formula in RSA is:

C=Me(modN)C = M^e \, (\text{mod} \, N)

Given M=7M = 7, e=11e = 11, and N=143N = 143:

C=711(mod143)C = 7^{11} \, (\text{mod} \, 143)

Let's calculate 711(mod143)7^{11} \, (\text{mod} \, 143):

72=497^2 = 49 74=492=24012401(mod143)=1157^4 = 49^2 = 2401 \quad \Rightarrow \quad 2401 \, (\text{mod} \, 143) = 115 78=1152=1322513225(mod143)=47^8 = 115^2 = 13225 \quad \Rightarrow \quad 13225 \, (\text{mod} \, 143) = 4 711=78×72×7=4×49×7=13721372(mod143)=847^{11} = 7^8 \times 7^2 \times 7 = 4 \times 49 \times 7 = 1372 \quad \Rightarrow \quad 1372 \, (\text{mod} \, 143) = 84

Thus, the ciphertext C=84C = 84.

3. Decryption:

The decryption formula in RSA is:

M=Cd(modN)M = C^d \, (\text{mod} \, N)

Given C=84C = 84, d=11d = 11, and N=143N = 143:

M=8411(mod143)M = 84^{11} \, (\text{mod} \, 143)

Let's calculate 8411(mod143)84^{11} \, (\text{mod} \, 143):

842=70567056(mod143)=6184^2 = 7056 \quad \Rightarrow \quad 7056 \, (\text{mod} \, 143) = 61 844=612=37213721(mod143)=784^4 = 61^2 = 3721 \quad \Rightarrow \quad 3721 \, (\text{mod} \, 143) = 7 848=72=4984^8 = 7^2 = 49 8411=848×842×84=49×61×84=250284250284(mod143)=784^{11} = 84^8 \times 84^2 \times 84 = 49 \times 61 \times 84 = 250284 \quad \Rightarrow \quad 250284 \, (\text{mod} \, 143) = 7

Thus, the decrypted message M=7M = 7, which matches the original plaintext.

Summary:

  • Public Key: (N=143,e=11)(N = 143, e = 11)
  • Private Key: (N=143,d=11)(N = 143, d = 11)
  • Encrypted Message (Ciphertext): C=84C = 84
  • Decrypted Message: M=7M = 7

Would you like any further details or clarification? Here are five related questions to consider:

  1. How is the modular inverse calculated in more complex cases?
  2. Why is it important for ee and ϕ(N)\phi(N) to be coprime?
  3. What is the significance of the totient function ϕ(N)\phi(N)?
  4. How is RSA security impacted by large prime numbers?
  5. What optimizations can be made to RSA for faster encryption?

Tip: In real RSA applications, much larger prime numbers are used to ensure security, typically over 1024 or 2048 bits in size.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Cryptography
Modular Arithmetic

Formulas

N = P × Q
ϕ(N) = (P - 1) × (Q - 1)
Encryption: C = M^e mod N
Decryption: M = C^d mod N
Extended Euclidean Algorithm for modular inverse

Theorems

Euler's Totient Function
Extended Euclidean Algorithm

Suitable Grade Level

Undergraduate level or advanced high school (Grades 11-12)