Math Problem Statement

Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με \(\angle A = 90^\circ\) και τέτοιο, ώστε \( AB = 16 \text{ cm} \) και \( BΓ = \frac{5}{3} AΓ \). Να υπολογίσετε: (i) τις πλευρές \( BΓ \) και \( AΓ \), (ii) το εμβαδόν του τριγώνου.

Solution

To solve this problem, let’s analyze the given information.

Given:

  • Triangle ABΓABΓ is a right triangle with A=90\angle A = 90^\circ.
  • AB=16AB = 16 cm.
  • BΓ=53AΓBΓ = \frac{5}{3} AΓ.

Objective:

  1. To find the lengths of sides BΓ and AΓ.
  2. To find the area of the triangle.

Solution:

Let's proceed with the calculations step-by-step.

Step 1: Set Up Variables

Let:

  • AΓ=xAΓ = x.
  • Then, BΓ=53xBΓ = \frac{5}{3} x.

Using the Pythagorean theorem for the right triangle ABΓABΓ: AB2=AΓ2+BΓ2AB^2 = AΓ^2 + BΓ^2 Substitute the values: 162=x2+(53x)216^2 = x^2 + \left(\frac{5}{3}x\right)^2

Step 2: Expand and Simplify

256=x2+259x2256 = x^2 + \frac{25}{9}x^2 Combine terms by expressing x2x^2 as a common factor: 256=x2(1+259)256 = x^2 \left(1 + \frac{25}{9}\right) 256=x2349256 = x^2 \cdot \frac{34}{9}

Step 3: Solve for x2x^2

Multiply both sides by 934\frac{9}{34}: x2=256934x^2 = 256 \cdot \frac{9}{34} x2=67.7647(approx)x^2 = 67.7647 \quad (\text{approx})

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Right Triangles
Pythagorean Theorem
Ratios

Formulas

Pythagorean theorem: \( a^2 + b^2 = c^2 \)
Area of a triangle: \( \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \)

Theorems

Pythagorean Theorem

Suitable Grade Level

Grades 8-10