Math Problem Statement
فرمولهای عکس اول را براساس فرمول عکس دوم بازنویسی کن؟
Solution
برای بازنویسی فرمولهای تصویر اول براساس فرمول تصویر دوم، ابتدا باید ببینیم که چگونه اجزای فرمولها با یکدیگر مرتبط هستند. فرمول اول توصیفکننده آنتروپی ترکیبی و بهرهوری تقسیمبندی است، در حالی که فرمول دوم به محاسبه آنتروپی مخلوط توزیعی با استفاده از "آنتروپی کسری" میپردازد. حالا به تطبیق دو فرمول میپردازیم.
فرمول اولیه:
در فرمول اول، آنتروپی ترکیبی به صورت زیر تعریف شده است: که در آن:
فرمول بازنویسی بر اساس آنتروپی کسری (تصویر دوم):
فرمول آنتروپی مخلوط کسری به این شکل است:
بازنویسی:
برای بازنویسی ، از تعریف فرمول کسری استفاده میکنیم. در اینجا:
- توزیع مخلوط است.
- به جای محاسبه مستقیم آنتروپی و ، میتوان این مقادیر را به شکل جزئیتر به صورت وزندار بازنویسی کرد.
بنابراین فرمول بازنویسیشده به شکل زیر خواهد بود:
این فرمول مشابه فرمول کسری خواهد بود، اما با ، زیرا آنتروپی کسری در فرمول دوم به عنوان تابعی از پارامتر تعریف شده است. در نتیجه، اگر ، فرمول دوم به همان فرمول اول تبدیل میشود.
جمعبندی:
فرمولهای تصویر اول را میتوان براساس فرمول تصویر دوم به صورت زیر نوشت:
- جایگذاری برای توزیع ترکیبی.
- تنظیم پارامتر کسری در فرمول دوم برای بازنویسی فرمول اول.
- در نظر گرفتن آنتروپی کسری با تنظیم لاگاریتم طبیعی توزیع مخلوط.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Entropy
Fractional Entropy
Probability Density Functions
Weighted Averages
Formulas
H^{(2)}(X) = p H(X|G=1) + (1-p) H(X|G=0)
H_\alpha(X) = -\int_{\mathbb{R}} (p f_1(x) + (1-p) f_0(x)) \log ((p f_1(x) + (1-p) f_0(x))^\alpha) dx
H(X|G=1) = -\int_{\mathbb{R}} f_1(x) \log f_1(x) dx
H(X|G=0) = -\int_{\mathbb{R}} f_0(x) \log f_0(x) dx
Theorems
Shannon Entropy
Generalized Fractional Entropy
Suitable Grade Level
Undergraduate level in Mathematics or Information Theory
Related Recommendation
Detailed Entropy Calculation Leading to Answer 0.571
Entropy Calculation Using Thermodynamic and Shannon's Formulas
How to Derive Weights for Weighted Average Calculations
Prove Inequality Involving Probability Density Functions and Convexity
Finding C and Calculating Probabilities for a PDF with Tortaglia's Formula