Math Problem Statement

Show that the following function is a sinusoid by rewriting it in the form C(x) = A cos(𝜔x + φ) + B

 or S(x) = A sin(𝜔x + φ) + B.

f(x) = − 1/2sin(4x) − √3/2cos(4x)

Solution

To demonstrate that f(x)=12sin(4x)32cos(4x)f(x) = -\frac{1}{2} \sin(4x) - \frac{\sqrt{3}}{2} \cos(4x) is a sinusoidal function, we can rewrite it in the form S(x)=Asin(ωx+φ)+BS(x) = A \sin(\omega x + \varphi) + B, where AA, ω\omega, φ\varphi, and BB are constants.

Step 1: Identify the Parameters

The given function is: f(x)=12sin(4x)32cos(4x)f(x) = -\frac{1}{2} \sin(4x) - \frac{\sqrt{3}}{2} \cos(4x) We can observe that this is a linear combination of sin(4x)\sin(4x) and cos(4x)\cos(4x) with coefficients 12-\frac{1}{2} and 32-\frac{\sqrt{3}}{2}, respectively.

Step 2: Rewrite the Function in Terms of a Single Sinusoidal Function

To rewrite the expression as a single sinusoidal function, we can use the identity: asin(4x)+bcos(4x)=Rsin(4x+φ)a \sin(4x) + b \cos(4x) = R \sin(4x + \varphi) where:

  • R=a2+b2R = \sqrt{a^2 + b^2} (the amplitude),
  • φ=arctan(ba)\varphi = \arctan\left(\frac{b}{a}\right) (the phase shift).

In this case:

  • a=12a = -\frac{1}{2}
  • b=32b = -\frac{\sqrt{3}}{2}

Calculating RR:

R=(12)2+(32)2R = \sqrt{\left(-\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{3}}{2}\right)^2} R=14+34=1=1R = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

Thus, R=1R = 1.

Calculating φ\varphi:

φ=arctan(3212)=arctan(31)=arctan(3)\varphi = \arctan\left(\frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}}\right) = \arctan\left(\frac{\sqrt{3}}{1}\right) = \arctan(\sqrt{3}) Since arctan(3)=π3\arctan(\sqrt{3}) = \frac{\pi}{3}, we have φ=π3\varphi = \frac{\pi}{3}.

Step 3: Substitute Back

Now we can rewrite f(x)f(x) as: f(x)=Rsin(4x+φ)f(x) = R \sin(4x + \varphi) Substituting R=1R = 1 and φ=π3\varphi = \frac{\pi}{3}: f(x)=sin(4x+π3)f(x) = \sin\left(4x + \frac{\pi}{3}\right)

Final Answer

Thus, the function can be written as: f(x)=sin(4x+π3)f(x) = \sin\left(4x + \frac{\pi}{3}\right) which is in the form S(x)=Asin(ωx+φ)+BS(x) = A \sin(\omega x + \varphi) + B with:

  • A=1A = 1
  • ω=4\omega = 4
  • φ=π3\varphi = \frac{\pi}{3}
  • B=0B = 0

This confirms that f(x)f(x) is indeed a sinusoidal function.


Would you like more details on any part of the solution?

Related Questions:

  1. How do you determine the amplitude and phase shift of a sinusoidal function?
  2. Can you explain why any linear combination of sine and cosine functions can be written as a single sinusoid?
  3. How do we convert a cosine function to an equivalent sine function?
  4. What is the effect of different values of AA and ω\omega on the graph of a sinusoidal function?
  5. How does the phase shift affect the graph of the sinusoidal function?

Tip:

Remember, combining asin(x)+bcos(x)a \sin(x) + b \cos(x) into a single sinusoidal term often simplifies analysis, especially when graphing or solving equations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sinusoidal Functions
Phase Shift
Amplitude

Formulas

a sin(x) + b cos(x) = R sin(x + φ), where R = √(a^2 + b^2) and φ = arctan(b/a)

Theorems

Sinusoidal Identity for Linear Combinations of Sine and Cosine

Suitable Grade Level

Grades 11-12