Math Problem Statement

Amplitude, Period, and Phase Shift: From Function. Given a function f(x) = a sin(bx + cor g(x) = a cos(bx + c), you have the following formulas: Amplitude = |a|              Period = 2𝜋 / |b|   Phase Shift = − c/b Determine the amplitude, period, and phase shift for the given functions: (a) f (x) = −4 sin(9x − 5𝜋) Amplitude = Period = Phase Shift = (b) f (x) = 8 sin(6 − 7𝜋x) Amplitude = Period = Phase Shift =

Solution

For each function, let's identify the values of aa, bb, and cc in the standard form of the sine function, f(x)=asin(bx+c)f(x) = a \sin(bx + c), and then use the formulas provided.

Function (a): f(x)=4sin(9x5π)f(x) = -4 \sin(9x - 5\pi)

  1. Amplitude: The amplitude is given by a|a|.

    • Here, a=4a = -4, so a=4|a| = 4.
    • Amplitude = 4
  2. Period: The period is given by 2πb\frac{2\pi}{|b|}.

    • Here, b=9b = 9, so 2πb=2π9\frac{2\pi}{|b|} = \frac{2\pi}{9}.
    • Period = 2π9\frac{2\pi}{9}
  3. Phase Shift: The phase shift is given by cb-\frac{c}{b}.

    • Here, c=5πc = -5\pi (since the expression is 9x5π9x - 5\pi), so 5π9=5π9-\frac{-5\pi}{9} = \frac{5\pi}{9}.
    • Phase Shift = 5π9\frac{5\pi}{9}

Summary for (a):

  • Amplitude = 4
  • Period = 2π9\frac{2\pi}{9}
  • Phase Shift = 5π9\frac{5\pi}{9}

Function (b): f(x)=8sin(67πx)f(x) = 8 \sin(6 - 7\pi x)

  1. Amplitude: The amplitude is given by a|a|.

    • Here, a=8a = 8, so a=8|a| = 8.
    • Amplitude = 8
  2. Period: The period is given by 2πb\frac{2\pi}{|b|}.

    • Here, b=7πb = -7\pi, so b=7π|b| = 7\pi.
    • Period = 2π7π=27\frac{2\pi}{7\pi} = \frac{2}{7}
  3. Phase Shift: The phase shift is given by cb-\frac{c}{b}.

    • Here, c=6c = 6 and b=7πb = -7\pi, so 67π=67π-\frac{6}{-7\pi} = \frac{6}{7\pi}.
    • Phase Shift = 67π\frac{6}{7\pi}

Summary for (b):

  • Amplitude = 8
  • Period = 27\frac{2}{7}
  • Phase Shift = 67π\frac{6}{7\pi}

Let me know if you have questions or need further details.


Additional Practice Questions:

  1. Determine the amplitude, period, and phase shift for g(x)=3cos(4x+π)g(x) = 3 \cos(4x + \pi).
  2. What is the period of h(x)=5sin(13x)h(x) = 5 \sin\left(\frac{1}{3}x\right)?
  3. Calculate the phase shift of f(x)=10sin(2xπ3)f(x) = 10 \sin(2x - \frac{\pi}{3}).
  4. If the function is y=7cos(5x+2)y = -7 \cos(5x + 2), what are the amplitude, period, and phase shift?
  5. For f(x)=2sin(πx5π4)f(x) = -2 \sin(\pi x - \frac{5\pi}{4}), determine the amplitude, period, and phase shift.

Tip:

Remember that the period of sine and cosine functions is directly influenced by the coefficient of xx inside the function. The higher this value, the shorter the period.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Amplitude
Period
Phase Shift

Formulas

Amplitude = |a|
Period = 2π / |b|
Phase Shift = -c/b

Theorems

Basic properties of sine functions

Suitable Grade Level

Grades 10-12