Math Problem Statement

Rewrite each of the following expressions as a single logarithm. That is, each answer should contain only one log (or ln) expression.

log 5 ( x ) − log 5 ( y )

3 log 8 ( x ) + log 8 ( y )

ln ( x ) + ln ( y ) − ln ( z )

Solution

To rewrite each expression as a single logarithm, we can apply the properties of logarithms:

  1. Logarithmic subtraction property: logb(a)logb(c)=logb(ac)\log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right)
  2. Logarithmic addition property: logb(a)+logb(c)=logb(ac)\log_b(a) + \log_b(c) = \log_b(ac)
  3. Power property: nlogb(a)=logb(an)n \cdot \log_b(a) = \log_b(a^n)

Using these properties, we can simplify each expression:


  1. Given: log5(x)log5(y)\log_5(x) - \log_5(y)

    Solution: log5(xy)\log_5\left(\frac{x}{y}\right)


  1. Given: 3log8(x)+log8(y)3 \log_8(x) + \log_8(y)

    Solution: First, apply the power property to 3log8(x)3 \log_8(x): 3log8(x)=log8(x3)3 \log_8(x) = \log_8(x^3) Then, use the addition property: log8(x3)+log8(y)=log8(x3y)\log_8(x^3) + \log_8(y) = \log_8(x^3 \cdot y)

    Final answer: log8(x3y)\log_8(x^3 \cdot y)


  1. Given: ln(x)+ln(y)ln(z)\ln(x) + \ln(y) - \ln(z)

    Solution: First, use the addition property for ln(x)+ln(y)\ln(x) + \ln(y): ln(x)+ln(y)=ln(xy)\ln(x) + \ln(y) = \ln(x \cdot y) Then, apply the subtraction property: ln(xy)ln(z)=ln(xyz)\ln(x \cdot y) - \ln(z) = \ln\left(\frac{x \cdot y}{z}\right)

    Final answer: ln(xyz)\ln\left(\frac{x \cdot y}{z}\right)


Let me know if you have any questions, or if you'd like a deeper explanation on any of the logarithmic properties used here.


Here are 5 related questions to deepen understanding:

  1. How would you rewrite 2log7(x)log7(y)+log7(z)2 \log_7(x) - \log_7(y) + \log_7(z) as a single logarithm?
  2. Can you simplify ln(a)2ln(b)+ln(c)\ln(a) - 2\ln(b) + \ln(c) to a single natural logarithm?
  3. What does log3(a)+log3(b)4log3(c)\log_3(a) + \log_3(b) - 4\log_3(c) simplify to in a single logarithmic expression?
  4. If you have log(x2)\log(x^2) and need to express it without an exponent, how would you simplify it?
  5. What is the simplified form of 5log(x)log(y)5 \log(x) - \log(y) using properties of logarithms?

Tip: Remember, whenever you see multiple logarithmic terms with the same base, try using the properties of logarithms to combine them into a single expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Properties
Algebra

Formulas

log_b(a) - log_b(c) = log_b(a/c)
log_b(a) + log_b(c) = log_b(ac)
n * log_b(a) = log_b(a^n)

Theorems

Logarithmic Properties

Suitable Grade Level

Grades 9-11