Math Problem Statement
what tranformation was performed to map figure A onto figure A
Solution
The transformation performed to map figure A onto figure A' is a reflection across the x-axis.
This is evident because figure A and A' are mirror images across the x-axis, where the positions of the points have been flipped vertically while maintaining their horizontal alignment.
Would you like more details or have any further questions?
Here are 5 related questions to explore:
- What is the rule for reflecting a point across the x-axis?
- How does reflecting across the y-axis differ from reflecting across the x-axis?
- What is the effect of translating a figure on a coordinate plane?
- How do you determine if a transformation is a rotation, reflection, or translation?
- Can a combination of transformations (like reflection and translation) be performed on a figure?
Tip: When reflecting a figure across the x-axis, the y-coordinate of each point changes its sign while the x-coordinate remains the same.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Transformations
Reflections
Formulas
Reflection over the x-axis: (x, y) → (x, -y)
Theorems
Reflection Theorem
Suitable Grade Level
Grades 7-9
Related Recommendation
Geometry Transformation: Mapping Figure A to Figure A' via Reflection
Identifying Transformations on a Coordinate Plane: Reflection of Figure A to Figure A'
Mapping Figure A to Figure B: Reflection Across the x-axis
Mapping Transformations: Figure A to Figure A'
Identifying Transformations from Figure A to A' in Coordinate Geometry