Math Problem Statement

Soit (U_n) la suite numérique définie par U_0 = 1 et pour tout n ∈ ℕ, U_{n+1} = (5U_n - 3)/(U_n + 1). Calculer U_1 et U_2. Montrer par récurrence que (U_n) est compris entre 1 et 3 pour tout n ∈ ℕ. Montrer que U_{n+1} - U_n = -(U_n - 1)(U_n - 3)/(U_n + 1) et déterminer la monotonie de la suite (U_n). Pour tout n ∈ ℕ, on pose V_n = U_n - 3. Montrer que (V_n) est une suite géométrique, puis exprimer V_n et U_n en fonction de n. Enfin, calculer la somme V_1 + V_2 + V_3 + ... + V_n.

Solution

The image contains a mathematics exercise related to a recursive sequence, where the terms UnU_n are defined as:

U0=1andUn+1=5Un3Un+1,nN.U_0 = 1 \quad \text{and} \quad U_{n+1} = \frac{5U_n - 3}{U_n + 1}, \quad \forall n \in \mathbb{N}.

Here are the tasks you're asked to perform:

  1. Calculate U1U_1 and U2U_2.
  2. Show by induction that UnU_n is between 1 and 3 for all nNn \in \mathbb{N}.
  3. a) Show that Un+1Un=(Un1)(Un3)Un+1.U_{n+1} - U_n = -\frac{(U_n - 1)(U_n - 3)}{U_n + 1}. b) Determine the monotonicity of the sequence (Un)(U_n).
  4. For each nN,n \in \mathbb{N}, define a new sequence Vn=Un3V_n = U_n - 3. a) Show that VnV_n is a geometric sequence with a common ratio. b) Express VnV_n and then UnU_n in terms of nn. c) Calculate the sum V1+V2+V3++VnV_1 + V_2 + V_3 + \dots + V_n.

Would you like help solving any of these tasks, or do you have specific questions about one of them?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recursive Sequences
Mathematical Induction
Geometric Sequences
Monotonicity
Summation

Formulas

U_{n+1} = (5U_n - 3)/(U_n + 1)
U_{n+1} - U_n = -(U_n - 1)(U_n - 3)/(U_n + 1)
V_n = U_n - 3

Theorems

Mathematical Induction
Monotonicity of Sequences
Properties of Geometric Sequences

Suitable Grade Level

Grades 10-12