Math Problem Statement
a sequence of real number Xn is defined recursively as X0, X1 are arbitrary positive reals and Xn+2 = (1+xN=1) / Xn. Find X2021
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Recursive sequences
Periodicity
Modular arithmetic
Formulas
X_{n+2} = (1 + X_{n+1}) / X_n
X_{2021} = X_2
2021 mod 3
Theorems
Periodicity in recursive sequences
Modulo arithmetic theorem
Suitable Grade Level
Grades 10-12
Related Recommendation
Finger Counting Problem: Predicting the Final Finger in a Cyclic Pattern
Finding the Units Digit of 1^1 + 2^2 + ... + 2020^2020
Find the 100th and 300th Numbers in the Sequence 3279163279163279
Finding the Units Digit of the Sum 1^2024 + 2^2024 + ... + 2024^2024
Finding the 2020th Number in a Sequence Using Squaring and Digit Summation